MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Growth Factor-Mediated Migration of Bone Marrow Progenitor Cells for Accelerated Scaffold Recruitment

Author(s)
Pancoast, James R.; Mroszczyk, Keri A.; Young, Whitney T.; Lee, Richard T.; Frisbie, David D.; Kisiday, John D.; Liebesny, Paul Hancock; Byun, Sangwon; Hung, Han-Hwa K; Grodzinsky, Alan J; ... Show more Show less
Thumbnail
DownloadLiebesny-Growth factor-mediat.pdf (846.5Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Tissue engineering approaches using growth factor-functionalized acellular scaffolds to support and guide repair driven by endogenous cells are thought to require a careful balance between cell recruitment and growth factor release kinetics. The objective of this study was to identify a growth factor combination that accelerates progenitor cell migration into self-assembling peptide hydrogels in the context of cartilage defect repair. A novel 3D gel-to-gel migration assay enabled quantification of the chemotactic impact of platelet-derived growth factor-BB (PDGF-BB), heparin-binding insulin-like growth factor-1 (HB-IGF-1), and transforming growth factor-β1 (TGF-β1) on progenitor cells derived from subchondral bovine trabecular bone (bone-marrow progenitor cells, BM-PCs) encapsulated in the peptide hydrogel [KLDL]3. Only the combination of PDGF-BB and TGF-β1 stimulated significant migration of BM-PCs over a 4-day period, measured by confocal microscopy. Both PDGF-BB and TGF-β1 were slowly released from the gel, as measured using their 125I-labeled forms, and they remained significantly present in the gel at 4 days. In the context of augmenting microfracture surgery for cartilage repair, our strategy of delivering chemotactic and proanabolic growth factors in KLD may provide the necessary local stimulus to help increase defect cellularity, providing more cells to generate repair tissue.
Date issued
2016-06
URI
http://hdl.handle.net/1721.1/111147
Department
Massachusetts Institute of Technology. Department of Biological Engineering; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Tissue Engineering Part A
Publisher
Mary Ann Liebert, Inc
Citation
Liebesny, Paul H. et al. “Growth Factor-Mediated Migration of Bone Marrow Progenitor Cells for Accelerated Scaffold Recruitment.” Tissue Engineering Part A 22, 13–14 (July 2016): 917–927 © 2016 Mary Ann Liebert, Inc
Version: Final published version
ISSN
1937-3341
1937-335X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.