MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Characterization and prediction of air traffic delays

Author(s)
Rebollo De La Bandera, Juan Jose; Balakrishnan, Hamsa
Thumbnail
DownloadBalakrishnan_Characterization and.pdf (1.014Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
This paper presents a new class of models for predicting air traffic delays. The proposed models consider both temporal and spatial (that is, network) delay states as explanatory variables, and use Random Forest algorithms to predict departure delays 2–24 h in the future. In addition to local delay variables that describe the arrival or departure delay states of the most influential airports and links (origin–destination pairs) in the network, new network delay variables that characterize the global delay state of the entire National Airspace System at the time of prediction are proposed. The paper analyzes the performance of the proposed prediction models in both classifying delays as above or below a certain threshold, as well as predicting delay values. The models are trained and validated on operational data from 2007 and 2008, and are evaluated using the 100 most-delayed links in the system. The results show that for a 2-h forecast horizon, the average test error over these 100 links is 19% when classifying delays as above or below 60 min. Similarly, the average over these 100 links of the median test error is found to be 21 min when predicting departure delays for a 2-h forecast horizon. The effects of changes in the classification threshold and forecast horizon on prediction performance are studied.
Date issued
2014-05
URI
http://hdl.handle.net/1721.1/111158
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Journal
Transportation Research Part C: Emerging Technologies
Publisher
Elsevier
Citation
Rebollo, Juan Jose and Balakrishnan, Hamsa. “Characterization and Prediction of Air Traffic Delays.” Transportation Research Part C: Emerging Technologies 44 (July 2014): 231–241 © 2014 Elsevier Ltd
Version: Author's final manuscript
ISSN
0968-090X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.