Show simple item record

dc.contributor.authorRosman, Guy
dc.contributor.authorRus, Daniela L
dc.contributor.authorFisher, John W
dc.date.accessioned2017-10-02T18:54:37Z
dc.date.available2017-10-02T18:54:37Z
dc.date.issued2016-12
dc.identifier.isbn978-1-4673-8851-1
dc.identifier.issn1063-6919
dc.identifier.urihttp://hdl.handle.net/1721.1/111676
dc.description.abstractSensor planning and active sensing, long studied in robotics, adapt sensor parameters to maximize a utility function while constraining resource expenditures. Here we consider information gain as the utility function. While these concepts are often used to reason about 3D sensors, these are usually treated as a predefined, black-box, component. In this paper we show how the same principles can be used as part of the 3D sensor. We describe the relevant generative model for structured-light 3D scanning and show how adaptive pattern selection can maximize information gain in an open-loop-feedback manner. We then demonstrate how different choices of relevant variable sets (corresponding to the subproblems of locatization and mapping) lead to different criteria for pattern selection and can be computed in an online fashion. We show results for both subproblems with several pattern dictionary choices and demonstrate their usefulness for pose estimation and depth acquisition.en_US
dc.description.sponsorshipUnited States. Office of Naval Research (Grant N00014-09-1-1051)en_US
dc.description.sponsorshipUnited States. Army Research Office (Grant W911NF-11- 1-0391)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (Grant N00014- 11-1-0688)en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/CVPR.2016.101en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT Web Domainen_US
dc.titleInformation-Driven Adaptive Structured-Light Scannersen_US
dc.typeArticleen_US
dc.identifier.citationRosman, Guy et al. “Information-Driven Adaptive Structured-Light Scanners.” 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30 2016, Las Vegas, Nevada, USA, Institute of Electrical and Electronics Engineers (IEEE), December 2016: 874-883 © 2016 Institute of Electrical and Electronics Engineers (IEEE)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.mitauthorRosman, Guy
dc.contributor.mitauthorRus, Daniela L
dc.contributor.mitauthorFisher, John W
dc.relation.journal2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsRosman, Guy; Rus, Daniela; Fisher, John W.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-9334-1706
dc.identifier.orcidhttps://orcid.org/0000-0001-5473-3566
dc.identifier.orcidhttps://orcid.org/0000-0003-4844-3495
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record