MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Electrodeposition Kinetics in Li-S Batteries: Effects of Low Electrolyte/Sulfur Ratios and Deposition Surface Composition

Author(s)
Fang, Frank Yuxing; Chiang, Yet-Ming
Thumbnail
DownloadChiang_Electrodeposition kinetics.pdf (945.3Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International License http://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Lithium-sulfur batteries obtain most of their capacity from the electrodeposition of Li₂S. This is often a slow process, limiting the rate capability of Li-S batteries. In this work, the kinetics of Li₂S deposition from polysulfide solutions of 1-7 M S concentration onto carbon and two conductive oxides (indium tin oxide, ITO; and aluminum-doped zinc oxide, AZO) were characterized. Higher polysulfide concentrations were found to result in significantly slower electrodeposition, with island nucleation and growth rates up to 75% less than at low concentrations. Since Li-S batteries with low electrolyte/sulfur (E/S) ratios necessarily reach higher polysulfide concentrations during use, the present results explain why high polarization and low rate capability are observed under such conditions. Given that low E/S ratios are critical to reach high energy density, means to improve electrodeposition kinetics at high polysulfide concentrations are necessary. Towards this goal, coatings of ITO and AZO on carbon fiber current collectors were found to improve island growth rates at 5 M by up to ∼60%. Of the two oxides, AZO was found to be superior in reducing the electrodeposition overpotential. Its benefits were demonstrated for carbon fiber current collectors coated with AZO and for conductive suspensions incorporating carbon black and nanoparticle AZO.
Date issued
2017-03
URI
http://hdl.handle.net/1721.1/111787
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering; Massachusetts Institute of Technology. Department of Materials Science and Engineering
Journal
Journal of The Electrochemical Society
Publisher
Electrochemical Society
Citation
Fan, Frank Y., and Chiang, Yet-Ming. “Electrodeposition Kinetics in Li-S Batteries: Effects of Low Electrolyte/Sulfur Ratios and Deposition Surface Composition.” Journal of The Electrochemical Society 164, 4 (March 2017): A917–A922 © The Author(s) 2017
Version: Final published version
ISSN
0013-4651
1945-7111

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.