MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Chemically Driven Interfacial Coupling in Charge-Transfer Mediated Functional Superstructures

Author(s)
Xu, Beibei; Li, Huashan; Li, Haoqi; Wilson, Andrew J.; Zhang, Lin; Chen, Ke; Willets, Katherine A.; Ren, Fei; Grossman, Jeffrey C.; Ren, Shenqiang; ... Show more Show less
Thumbnail
DownloadGrossman_Chemically driven.pdf (6.752Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Organic charge-transfer superstructures are enabling new interfacial electronics, such as organic thermoelectrics, spin-charge converters, and solar cells. These carbon-based materials could also play an important role in spin-based electronics due to their exceptionally long spin lifetime. However, to explore these potentials a coherent design strategy to control interfacial charge-transfer interaction is indispensable. Here we report that the control of organic crystallization and interfacial electron coupling are keys to dictate external stimuli responsive behaviors in organic charge-transfer superstructures. The integrated experimental and computational study reveals the importance of chemically driven interfacial coupling in organic charge-transfer superstructures. Such degree of engineering opens up a new route to develop a new generation of functional charge-transfer materials, enabling important advance in all organic interfacial electronics.
Date issued
2016-03
URI
http://hdl.handle.net/1721.1/111824
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering; Massachusetts Institute of Technology. Research Laboratory of Electronics
Journal
Nano Letters
Publisher
American Chemical Society (ACS)
Citation
Xu, Beibei et al. “Chemically Driven Interfacial Coupling in Charge-Transfer Mediated Functional Superstructures” Nano Letters 16, 4 (April 2016): 2851–2859 © 2016 American Chemical Society
Version: Author's final manuscript
ISSN
1530-6984
1530-6992

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.