MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Thermal conductivity of GaAs/Ge nanostructures

Author(s)
Jia, Roger Qingfeng; Zeng, Lingping; Chen, Gang; Fitzgerald, Eugene A
Thumbnail
DownloadFitzgerald_Thermal conductivity.pdf (1.544Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Superlattices are of great interest as platform materials for thermoelectric technology that are capable of directly converting low-grade heat energy into useful electrical power. In this work, the thermal conductivities of GaAs/Ge superlattice nanostructures were investigated systematically in relation to their morphologies and interfaces. Thermal conductivities were measured using ultrafast time-domain thermoreflectance and were found to decrease with increasing interface densities, consistent with past understanding of microscopic phonon transport in the particle regime. The lowest thermal conductivities were observed in (GaAs)[subscript 0.77](Ge₂)[subscript 0.23] alloys, and transmission electron microscopy study reveals phase separation in the alloys. These alloys can be interpreted as fine nanostructures, with length scales comparable to the periods of very thin superlattices. Electrical transport measurements along the film plane direction showed no significant reduction in electrical properties attributable to the interfaces between GaAs and Ge. Our experimental findings help gain fundamental insight into nanoscale thermal transport in superlattices and are also useful for future improvement of thermoelectric performance using nanostructures.
Date issued
2017-06
URI
http://hdl.handle.net/1721.1/111829
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering; Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Applied Physics Letters
Publisher
American Institute of Physics (AIP)
Citation
Jia, Roger et al. “Thermal Conductivity of GaAs/Ge Nanostructures.” Applied Physics Letters 110, 22 (May 2017): 222105 © 2017 Author(s)
Version: Original manuscript
ISSN
0003-6951
1077-3118

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.