Show simple item record

dc.contributor.authorMozhdehi, Davoud
dc.contributor.authorCheng, Jing
dc.contributor.authorBarrett, Devin G.
dc.contributor.authorGuan, Zhibin
dc.contributor.authorMessersmith, Phillip B.
dc.contributor.authorGrindy, Scott Charles
dc.contributor.authorLearsch, Robert W.
dc.contributor.authorHolten-Andersen, Niels
dc.date.accessioned2017-10-13T19:44:24Z
dc.date.available2017-10-13T19:44:24Z
dc.date.issued2015-08
dc.date.submitted2014-05
dc.identifier.issn1476-1122
dc.identifier.issn1476-4660
dc.identifier.urihttp://hdl.handle.net/1721.1/111845
dc.description.abstractIn conventional polymer materials, mechanical performance is traditionally engineered via material structure, using motifs such as polymer molecular weight, polymer branching, or block copolymer design. Here, by means of a model system of 4-arm poly(ethylene glycol) hydrogels crosslinked with multiple, kinetically distinct dynamic metal-ligand coordinate complexes, we show that polymer materials with decoupled spatial structure and mechanical performance can be designed. By tuning the relative concentration of two types of metal-ligand crosslinks, we demonstrate control over the material's mechanical hierarchy of energy-dissipating modes under dynamic mechanical loading, and therefore the ability to engineer a priori the viscoelastic properties of these materials by controlling the types of crosslinks rather than by modifying the polymer itself. This strategy to decouple material mechanics from structure is general and may inform the design of soft materials for use in complex mechanical environments. Three examples that demonstrate this are provided.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Award DMR-0819762)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Award DMR-1419807)en_US
dc.publisherSpringer Natureen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/NMAT4401en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.titleControl of hierarchical polymer mechanics with bioinspired metal-coordination dynamicsen_US
dc.typeArticleen_US
dc.identifier.citationGrindy, Scott C. et al. “Control of Hierarchical Polymer Mechanics with Bioinspired Metal-Coordination Dynamics.” Nature Materials 14, 12 (August 2015): 1210–1216 © 2015 Macmillan Publishers Limited, Part of Springer Natureen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.mitauthorGrindy, Scott Charles
dc.contributor.mitauthorLearsch, Robert W.
dc.contributor.mitauthorHolten-Andersen, Niels
dc.relation.journalNature Materialsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2017-10-11T13:49:14Z
dspace.orderedauthorsGrindy, Scott C.; Learsch, Robert; Mozhdehi, Davoud; Cheng, Jing; Barrett, Devin G.; Guan, Zhibin; Messersmith, Phillip B.; Holten-Andersen, Nielsen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-0947-7759
dc.identifier.orcidhttps://orcid.org/0000-0002-5318-9674
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record