MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Origins of bad-metal conductivity and the insulator–metal transition in the rare-earth nickelates

Author(s)
Ha, Sieu D.; Silevitch, D. M.; Ramanathan, Shriram; Jaramillo, Rafael
Thumbnail
DownloadJaramillo_Origins of bad.pdf (1.228Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
For most metals, increasing temperature (T) or disorder hastens electron scattering. The electronic conductivity (σ) decreases as T rises because electrons are more rapidly scattered by lattice vibrations. The value of σ decreases as disorder increases because electrons are more rapidly scattered by imperfections in the material. This is the scattering rate hypothesis, which has guided our understanding of metal conductivity for over a century. However, for so-called bad metals with very low σ this hypothesis predicts scattering rates so high as to conflict with Heisenberga's uncertainty principle. Bad-metal conductivity has remained a puzzle since its initial discovery in the 1980s in high-temperature superconductors. Here we introduce the rare-earth nickelates (RNiO₃, R = rare-earth) as a class of bad metals. We study SmNiO₃ thin films using infrared spectroscopy while varying T and disorder. We show that the interaction between lattice distortions and Ni-O covalence explains bad-metal conductivity and the insulator-metal transition. This interaction shifts spectral weight over the large energy scale established by the Ni-O orbital interaction, thus enabling very low σ without violating the uncertainty principle.
Date issued
2014-03
URI
http://hdl.handle.net/1721.1/111849
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Journal
Nature Physics
Publisher
Springer Nature
Citation
Jaramillo, R. et al. “Origins of Bad-Metal Conductivity and the Insulator–metal Transition in the Rare-Earth Nickelates.” Nature Physics 10, 4 (March 2014): 304–307 © 2017 Macmillan Publishers Limited, part of Springer Nature
Version: Original manuscript
ISSN
1745-2473
1745-2481

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.