Epitaxy: Programmable Atom Equivalents
Author(s)
Wang, Mary X.; Seo, Soyoung E.; Fleischman, Dagny; Lee, Byeongdu; Kim, Youngeun; Atwater, Harry A.; Mirkin, Chad A.; Gabrys, Paul Anthony; Macfarlane, Robert J; ... Show more Show less
DownloadMacfarlane_Epitaxy.pdf (3.627Mb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
The programmability of DNA makes it an attractive structure-directing ligand for the assembly of nanoparticle (NP) superlattices in a manner that mimics many aspects of atomic crystallization. However, the synthesis of multilayer single crystals of defined size remains a challenge. Though previous studies considered lattice mismatch as the major limiting factor for multilayer assembly, thin film growth depends on many interlinked variables. Here, a more comprehensive approach is taken to study fundamental elements, such as the growth temperature and the thermodynamics of interfacial energetics, to achieve epitaxial growth of NP thin films. Both surface morphology and internal thin film structure are examined to provide an understanding of particle attachment and reorganization during growth. Under equilibrium conditions, single crystalline, multilayer thin films can be synthesized over 500 × 500 μm² areas on lithographically patterned templates, whereas deposition under kinetic conditions leads to the rapid growth of glassy films. Importantly, these superlattices follow the same patterns of crystal growth demonstrated in atomic thin film deposition, allowing these processes to be understood in the context of well-studied atomic epitaxy and enabling a nanoscale model to study fundamental crystallization processes. Through understanding the role of epitaxy as a driving force for NP assembly, we are able to realize 3D architectures of arbitrary domain geometry and size.
Date issued
2016-12Department
Massachusetts Institute of Technology. Department of Materials Science and EngineeringJournal
ACS Nano
Publisher
American Chemical Society (ACS)
Citation
Wang, Mary X. et al. "Epitaxy: Programmable Atom Equivalents" ACS Nano, 11, 1 (December 2016): 180–185 © 2016 American Chemical Society
Version: Final published version
ISSN
1936-0851
1936-086X