MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evidence of reduced recombination rate in human regulatory domains

Author(s)
Ernst, Jason; Liu, Yaping; Sarkar, Abhishek Kulshreshtha; Kheradpour, Pouya; Kellis, Manolis
Thumbnail
Download13059_2017_Article_1308.pdf (1.513Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Background Recombination rate is non-uniformly distributed across the human genome. The variation of recombination rate at both fine and large scales cannot be fully explained by DNA sequences alone. Epigenetic factors, particularly DNA methylation, have recently been proposed to influence the variation in recombination rate. Results We study the relationship between recombination rate and gene regulatory domains, defined by a gene and its linked control elements. We define these links using expression quantitative trait loci (eQTLs), methylation quantitative trait loci (meQTLs), chromatin conformation from publicly available datasets (Hi-C and ChIA-PET), and correlated activity links that we infer across cell types. Each link type shows a “recombination rate valley” of significantly reduced recombination rate compared to matched control regions. This recombination rate valley is most pronounced for gene regulatory domains of early embryonic development genes, housekeeping genes, and constitutive regulatory elements, which are known to show increased evolutionary constraint across species. Recombination rate valleys show increased DNA methylation, reduced doublestranded break initiation, and increased repair efficiency, specifically in the lineage leading to the germ line. Moreover, by using only the overlap of functional links and DNA methylation in germ cells, we are able to predict the recombination rate with high accuracy. Conclusions Our results suggest the existence of a recombination rate valley at regulatory domains and provide a potential molecular mechanism to interpret the interplay between genetic and epigenetic variations.
Date issued
2017-10
URI
http://hdl.handle.net/1721.1/111975
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Genome Biology
Publisher
BioMed Central
Citation
Liu, Yaping et al. "Evidence of reduced recombination rate in human regulatory domains" Genome Biology 2017, 18 (October 2017):193 © 2017 The Author(s)
Version: Final published version
ISSN
1474-760X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.