Show simple item record

dc.contributor.authorYuan, Wenzhen
dc.contributor.authorZhu, Chenzhuo
dc.contributor.authorOwens, Andrew Hale
dc.contributor.authorSrinivasan, Mandayam A
dc.contributor.authorAdelson, Edward H
dc.date.accessioned2017-10-27T13:55:46Z
dc.date.available2017-10-27T13:55:46Z
dc.date.issued2017-07
dc.date.submitted2017-06
dc.identifier.isbn978-1-5090-4633-1
dc.identifier.urihttp://hdl.handle.net/1721.1/111980
dc.description.abstractHardness is among the most important attributes of an object that humans learn about through touch. However, approaches for robots to estimate hardness are limited, due to the lack of information provided by current tactile sensors. In this work, we address these limitations by introducing a novel method for hardness estimation, based on the GelSight tactile sensor, and the method does not require accurate control of contact conditions or the shape of objects. A GelSight has a soft contact interface, and provides high resolution tactile images of contact geometry, as well as contact force and slip conditions. In this paper, we try to use the sensor to measure hardness of objects with multiple shapes, under a loosely controlled contact condition. The contact is made manually or by a robot hand, while the force and trajectory are unknown and uneven. We analyze the data using a deep constitutional (and recurrent) neural network. Experiments show that the neural net model can estimate the hardness of objects with different shapes and hardness ranging from 8 to 87 in Shore 00 scale.en_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/ICRA.2017.7989116en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT Web Domainen_US
dc.titleShape-independent hardness estimation using deep learning and a GelSight tactile sensoren_US
dc.typeArticleen_US
dc.identifier.citationYuan, Wenzhen et al. “Shape-Independent Hardness Estimation Using Deep Learning and a GelSight Tactile Sensor.” 2017 IEEE International Conference on Robotics and Automation (ICRA) May 29 - June 3 2017, Singapore, Institute of Electrical and Electronics Engineers (IEEE), July 2017 © 2017 Institute of Electrical and Electronics Engineers (IEEE)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Human and Machine Hapticsen_US
dc.contributor.mitauthorYuan, Wenzhen
dc.contributor.mitauthorZhu, Chenzhuo
dc.contributor.mitauthorOwens, Andrew Hale
dc.contributor.mitauthorSrinivasan, Mandayam A
dc.contributor.mitauthorAdelson, Edward H
dc.relation.journal2017 IEEE International Conference on Robotics and Automation (ICRA)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2017-10-25T16:21:05Z
dspace.orderedauthorsYuan, Wenzhen; Zhu, Chenzhuo; Owens, Andrew; Srinivasan, Mandayam A.; Adelson, Edward H.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-8014-356X
dc.identifier.orcidhttps://orcid.org/0000-0001-9020-9593
dc.identifier.orcidhttps://orcid.org/0000-0003-1347-6502
dc.identifier.orcidhttps://orcid.org/0000-0003-2222-6775
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record