Cautionary Tales of Inapproximability
Author(s)
Budden, David; Jones, Mitchell
DownloadBudden-2016-Cautionary Tales of.pdf (75.11Kb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
Modeling biology as classical problems in computer science allows researchers to leverage the wealth of theoretical advancements in this field. Despite countless studies presenting heuristics that report improvement on specific benchmarking data, there has been comparatively little focus on exploring the theoretical bounds on the performance of practical (polynomial-time) algorithms. Conversely, theoretical studies tend to overstate the generalizability of their conclusions to physical biological processes. In this article we provide a fresh perspective on the concepts of NP-hardness and inapproximability in the computational biology domain, using popular sequence assembly and alignment (mapping) algorithms as illustrative examples. These algorithms exemplify how computer science theory can both (a) lead to substantial improvement in practical performance and (b) highlight areas ripe for future innovation. Importantly, we discuss caveats that seemingly allow the performance of heuristics to exceed their provable bounds.
Date issued
2016-09Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer ScienceJournal
Journal of Computational Biology
Publisher
Mary Ann Liebert, Inc
Citation
Budden, David, and Jones, Mitchell. “Cautionary Tales of Inapproximability.” Journal of Computational Biology 24, 3 (March 2017): 213–216 © 2017 Mary Ann Liebert, Inc
Version: Final published version
ISSN
1066-5277
1557-8666