Show simple item record

dc.contributor.authorSorbom, Brandon Nils
dc.contributor.authorBall, Justin Richard
dc.contributor.authorPalmer, Timothy R.
dc.contributor.authorMangiarotti, Franco Julio
dc.contributor.authorSierchio, Jennifer M.
dc.contributor.authorKasten, Cale
dc.contributor.authorSutherland, Derek A.
dc.contributor.authorBarnard, Harold Salvadore
dc.contributor.authorHaakonsen, Christian Bernt
dc.contributor.authorGoh, Jonathan Yanming
dc.contributor.authorSung, Choongki
dc.contributor.authorWhyte, Dennis G
dc.contributor.authorBonoli, Paul T.
dc.date.accessioned2017-10-30T15:21:06Z
dc.date.available2017-10-30T15:21:06Z
dc.date.issued2015-07
dc.date.submitted2015-03
dc.identifier.issn0920-3796
dc.identifier.urihttp://hdl.handle.net/1721.1/112016
dc.description.abstractThe affordable, robust, compact (ARC) reactor is the product of a conceptual design study aimed at reducing the size, cost, and complexity of a combined fusion nuclear science facility (FNSF) and demonstration fusion Pilot power plant. ARC is a ∼200–250 MWe tokamak reactor with a major radius of 3.3 m, a minor radius of 1.1 m, and an on-axis magnetic field of 9.2 T. ARC has rare earth barium copper oxide (REBCO) superconducting toroidal field coils, which have joints to enable disassembly. This allows the vacuum vessel to be replaced quickly, mitigating first wall survivability concerns, and permits a single device to test many vacuum vessel designs and divertor materials. The design point has a plasma fusion gain of Q[subscript p] ≈ 13.6, yet is fully non-inductive, with a modest bootstrap fraction of only ∼63%. Thus ARC offers a high power gain with relatively large external control of the current profile. This highly attractive combination is enabled by the ∼23 T peak field on coil achievable with newly available REBCO superconductor technology. External current drive is provided by two innovative inboard RF launchers using 25 MW of lower hybrid and 13.6 MW of ion cyclotron fast wave power. The resulting efficient current drive provides a robust, steady state core plasma far from disruptive limits. ARC uses an all-liquid blanket, consisting of low pressure, slowly flowing fluorine lithium beryllium (FLiBe) molten salt. The liquid blanket is low-risk technology and provides effective neutron moderation and shielding, excellent heat removal, and a tritium breeding ratio ≥ 1.1. The large temperature range over which FLiBe is liquid permits an output blanket temperature of 900 K, single phase fluid cooling, and a high efficiency helium Brayton cycle, which allows for net electricity generation when operating ARC as a Pilot power plant.en_US
dc.description.sponsorshipUnited States. Department of Energy (Grant DE-FG02-94ER54235)en_US
dc.description.sponsorshipUnited States. Department of Energy (Grant DE-SC008435)en_US
dc.description.sponsorshipUnited States. Department of Energy. Office of Fusion Energy Sciences (Grant DE-FC02-93ER54186)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant 1122374)en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.fusengdes.2015.07.008en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcearXiven_US
dc.titleARC: A compact, high-field, fusion nuclear science facility and demonstration power plant with demountable magnetsen_US
dc.typeArticleen_US
dc.identifier.citationSorbom, B.N. et al. “ARC: A Compact, High-Field, Fusion Nuclear Science Facility and Demonstration Power Plant with Demountable Magnets.” Fusion Engineering and Design 100 (November 2015): 378–405 © 2015 Elsevier B.V.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Plasma Science and Fusion Centeren_US
dc.contributor.mitauthorSorbom, Brandon Nils
dc.contributor.mitauthorBall, Justin Richard
dc.contributor.mitauthorPalmer, Timothy R.
dc.contributor.mitauthorMangiarotti, Franco Julio
dc.contributor.mitauthorSierchio, Jennifer M.
dc.contributor.mitauthorBonoli, Paul T
dc.contributor.mitauthorKasten, Cale
dc.contributor.mitauthorSutherland, Derek A.
dc.contributor.mitauthorBarnard, Harold Salvadore
dc.contributor.mitauthorHaakonsen, Christian Bernt
dc.contributor.mitauthorGoh, Jonathan Yanming
dc.contributor.mitauthorSung, Choongki
dc.contributor.mitauthorWhyte, Dennis G
dc.relation.journalFusion Engineering and Designen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsSorbom, B.N.; Ball, J.; Palmer, T.R.; Mangiarotti, F.J.; Sierchio, J.M.; Bonoli, P.; Kasten, C.; Sutherland, D.A.; Barnard, H.S.; Haakonsen, C.B.; Goh, J.; Sung, C.; Whyte, D.G.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-2110-6766
dc.identifier.orcidhttps://orcid.org/0000-0002-7132-5916
dc.identifier.orcidhttps://orcid.org/0000-0001-7700-848X
dc.identifier.orcidhttps://orcid.org/0000-0002-1620-9680
dc.identifier.orcidhttps://orcid.org/0000-0002-7566-2610
dc.identifier.orcidhttps://orcid.org/0000-0002-8899-7479
dc.identifier.orcidhttps://orcid.org/0000-0002-9001-5606
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record