Show simple item record

dc.contributor.authorCzekala, Ian
dc.contributor.authorMandel, Kaisey S.
dc.contributor.authorAndrews, Sean M.
dc.contributor.authorDittmann, Jason A.
dc.contributor.authorGhosh, Sujit K.
dc.contributor.authorMontet, Benjamin T.
dc.contributor.authorNewton, Elisabeth R
dc.date.accessioned2017-10-31T15:51:58Z
dc.date.available2017-10-31T15:51:58Z
dc.date.issued2017-05
dc.date.submitted2017-03
dc.identifier.issn1538-4357
dc.identifier.issn0004-637X
dc.identifier.urihttp://hdl.handle.net/1721.1/112099
dc.description.abstractMeasurements of radial velocity variations from the spectroscopic monitoring of stars and their companions are essential for a broad swath of astrophysics; these measurements provide access to the fundamental physical properties that dictate all phases of stellar evolution and facilitate the quantitative study of planetary systems. The conversion of those measurements into both constraints on the orbital architecture and individual component spectra can be a serious challenge, however, especially for extreme flux ratio systems and observations with relatively low sensitivity. Gaussian processes define sampling distributions of flexible, continuous functions that are well-motivated for modeling stellar spectra, enabling proficient searches for companion lines in time-series spectra. We introduce a new technique for spectral disentangling, where the posterior distributions of the orbital parameters and intrinsic, rest-frame stellar spectra are explored simultaneously without needing to invoke cross-correlation templates. To demonstrate its potential, this technique is deployed on red-optical time-series spectra of the mid-M-dwarf binary LP661-13. We report orbital parameters with improved precision compared to traditional radial velocity analysis and successfully reconstruct the primary and secondary spectra. We discuss potential applications for other stellar and exoplanet radial velocity techniques and extensions to time-variable spectra. The code used in this analysis is freely available as an open-source Python package.en_US
dc.publisherIOP Publishingen_US
dc.relation.isversionofhttp://dx.doi.org/10.3847/1538-4357/aa6aaben_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceIOP Publishingen_US
dc.titleDisentangling Time-series Spectra with Gaussian Processes: Applications to Radial Velocity Analysisen_US
dc.typeArticleen_US
dc.identifier.citationCzekala, Ian et al. “Disentangling Time-Series Spectra with Gaussian Processes: Applications to Radial Velocity Analysis.” The Astrophysical Journal 840, 1 (May 2017): 49 © 2017 The American Astronomical Societyen_US
dc.contributor.departmentMIT Kavli Institute for Astrophysics and Space Researchen_US
dc.contributor.mitauthorNewton, Elisabeth R
dc.relation.journalAstrophysical Journalen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2017-10-19T17:11:12Z
dspace.orderedauthorsCzekala, Ian; Mandel, Kaisey S.; Andrews, Sean M.; Dittmann, Jason A.; Ghosh, Sujit K.; Montet, Benjamin T.; Newton, Elisabeth R.en_US
dspace.embargo.termsNen_US
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record