Show simple item record

dc.contributor.authorDunn, Denise E.
dc.contributor.authorAvila-Pacheco, Julian
dc.contributor.authorGreengard, Paul
dc.contributor.authorClish, Clary B.
dc.contributor.authorLo, Donald C.
dc.contributor.authorPirhaji, Leila
dc.contributor.authorMilani, Pamela
dc.contributor.authorDalin, Simona
dc.contributor.authorWassie, Brook T.
dc.contributor.authorFenster, Robert
dc.contributor.authorHeiman, Myriam
dc.contributor.authorFraenkel, Ernest
dc.date.accessioned2017-11-14T19:12:48Z
dc.date.available2017-11-14T19:12:48Z
dc.date.issued2017-09
dc.date.submitted2016-01
dc.identifier.issn2041-1723
dc.identifier.urihttp://hdl.handle.net/1721.1/112189
dc.description.abstractThe immense and growing repositories of transcriptional data may contain critical insights for developing new therapies. Current approaches to mining these data largely rely on binary classifications of disease vs. control, and are not able to incorporate measures of disease severity. We report an analytical approach to integrate ordinal clinical information with transcriptomics. We apply this method to public data for a large cohort of Huntington's disease patients and controls, identifying and prioritizing phenotype-associated genes. We verify the role of a high-ranked gene in dysregulation of sphingolipid metabolism in the disease and demonstrate that inhibiting the enzyme, sphingosine-1-phosphate lyase 1 (SPL), has neuroprotective effects in Huntington's disease models. Finally, we show that one consequence of inhibiting SPL is intracellular inhibition of histone deacetylases, thus linking our observations in sphingolipid metabolism to a well-characterized Huntington's disease pathway. Our approach is easily applied to any data with ordinal clinical measurements, and may deepen our understanding of disease processes.en_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/s41467-017-00353-6en_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleIdentifying therapeutic targets by combining transcriptional data with ordinal clinical measurementsen_US
dc.typeArticleen_US
dc.identifier.citationPirhaji, Leila et al “Identifying Therapeutic Targets by Combining Transcriptional Data with Ordinal Clinical Measurements.” Nature Communications 8, 1 (September 2017): 623 © 2017 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.departmentPicower Institute for Learning and Memoryen_US
dc.contributor.mitauthorPirhaji, Leila
dc.contributor.mitauthorMilani, Pamela
dc.contributor.mitauthorDalin, Simona
dc.contributor.mitauthorWassie, Brook T.
dc.contributor.mitauthorFenster, Robert
dc.contributor.mitauthorHeiman, Myriam
dc.contributor.mitauthorFraenkel, Ernest
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2017-11-13T17:46:38Z
dspace.orderedauthorsPirhaji, Leila; Milani, Pamela; Dalin, Simona; Wassie, Brook T.; Dunn, Denise E.; Fenster, Robert J.; Avila-Pacheco, Julian; Greengard, Paul; Clish, Clary B.; Heiman, Myriam; Lo, Donald C.; Fraenkel, Ernesten_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-6246-276X
dc.identifier.orcidhttps://orcid.org/0000-0003-0250-0474
dc.identifier.orcidhttps://orcid.org/0000-0001-5024-9718
dc.identifier.orcidhttps://orcid.org/0000-0002-6365-8673
dc.identifier.orcidhttps://orcid.org/0000-0001-9249-8181
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record