Show simple item record

dc.contributor.authorCesnavicius, Kestutis
dc.date.accessioned2017-11-17T14:56:17Z
dc.date.available2017-11-17T14:56:17Z
dc.date.issued2014-06
dc.identifier.issn0075-4102
dc.identifier.issn1435-5345
dc.identifier.urihttp://hdl.handle.net/1721.1/112218
dc.description.abstractFor an elliptic curve E over a number field K, one consequence of the Birch and Swinnerton-Dyer conjecture is the parity conjecture: the global root number matches the parity of the Mordell-Weil rank. Assuming finiteness of III (E/K) [p∞] for a prime p this is equivalent to the p-parity conjecture: the global root number matches the parity of the Z[subscript p]-corank of the p∞-Selmer group. We complete the proof of the p-parity conjecture for elliptic curves that have a p-isogeny for p > 3 (the cases p ≤ 3 were known). Tim and Vladimir Dokchitser have showed this in the case when E has semistable reduction at all places above p by establishing respective cases of a conjectural formula for the local root number. We remove the restrictions on reduction types by proving their formula in the remaining cases. We apply our result to show that the p-parity conjecture holds for every E with complex multiplication defined over K. Consequently, if for such an elliptic curve III (E/K) [p∞] is infinite, it must contain (Q[subscript p]/Z[subscript p])².en_US
dc.publisherWalter de Gruyteren_US
dc.relation.isversionofhttp://dx.doi.org/10.1515/crelle-2014-0040en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceDe Gruyteren_US
dc.titleThe p-parity conjecture for elliptic curves with a p-isogenyen_US
dc.typeArticleen_US
dc.identifier.citationČesnavičius, Kęstutis. “The p-Parity Conjecture for Elliptic Curves with a p-Isogeny.” Journal Für Die Reine Und Angewandte Mathematik (Crelles Journal) 2016, 719 (January 2016): 45-73 © 2016 De Gruyteren_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorCesnavicius, Kestutis
dc.relation.journalJournal für die reine und angewandte Mathematik (Crelles Journal)en_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2017-10-27T17:17:17Z
dspace.orderedauthorsČesnavičius, Kęstutisen_US
dspace.embargo.termsNen_US
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record