MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

G-quadruplex–forming promoter sequences enable transcriptional activation in response to oxidative stress

Author(s)
Fedeles, Bogdan I
Thumbnail
DownloadFedeles-2017-G-quadruplex-forming promoter seq.pdf (609.1Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Oxidative DNA damage is an implacable consequence of aerobic metabolism and often exacerbated in inflammatory processes that use reactive oxygen species (ROS) both as signaling molecules and as chemical warfare against pathogens. An extensive body of work, recently reviewed in ref. 1, has highlighted the deleterious consequences of oxidative DNA damage, which involves oxidized nucleobases that, if left unrepaired, are either mutagenic or strong replication blockers. Most oxidative DNA damage is efficiently processed by DNA repair pathways, primarily base excision repair (BER), the molecular details of which are generally well understood (2). However, an emerging area of research posits that certain oxidative DNA lesions and their associated repair complexes are intermediates in a signaling transduction cascade that uses ROS as secondary messengers to ultimately effect transcriptional regulation (3⇓⇓⇓–7). In PNAS, Fleming et al. (8) reinforce these notions by describing a compelling mechanism by which 8-oxoguanine (OG), a canonical oxidative DNA damage product, when occurring in guanine-rich, G-quadruplex–forming promoter sequences, directly up-regulates transcription of the downstream gene.
Date issued
2017-03
URI
http://hdl.handle.net/1721.1/112221
Department
Massachusetts Institute of Technology. Center for Environmental Health Sciences; Massachusetts Institute of Technology. Department of Biological Engineering
Journal
Proceedings of the National Academy of Sciences
Publisher
National Academy of Sciences (U.S.)
Citation
Fedeles, Bogdan I. “G-Quadruplex–forming Promoter Sequences Enable Transcriptional Activation in Response to Oxidative Stress.” Proceedings of the National Academy of Sciences 114, 11 (March 2017): 2788–2790 © 2017 National Academy of Sciences
Version: Final published version
ISSN
0027-8424
1091-6490

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.