Show simple item record

dc.contributor.authorBrandon Westover, M.
dc.contributor.authorChing, ShiNung
dc.contributor.authorKumaraswamy, Vishakhadatta M.
dc.contributor.authorAkeju, Oluwaseun
dc.contributor.authorPierce, Eric
dc.contributor.authorCash, Sydney S.
dc.contributor.authorKilbride, Ronan
dc.contributor.authorBrown, Emery Neal
dc.contributor.authorPurdon, Patrick L.
dc.date.accessioned2017-11-20T16:03:05Z
dc.date.available2017-11-20T16:03:05Z
dc.date.issued2015-01
dc.identifier.issn1388-2457
dc.identifier.urihttp://hdl.handle.net/1721.1/112235
dc.description.abstractObjective: Deep hypothermia induces 'burst suppression' (BS), an electroencephalogram pattern with low-voltage 'suppressions' alternating with high-voltage 'bursts'. Current understanding of BS comes mainly from anesthesia studies, while hypothermia-induced BS has received little study. We set out to investigate the electroencephalogram changes induced by cooling the human brain through increasing depths of BS through isoelectricity. Methods: We recorded scalp electroencephalograms from eleven patients undergoing deep hypothermia during cardiac surgery with complete circulatory arrest, and analyzed these using methods of spectral analysis. Results: Within patients, the depth of BS systematically depends on the depth of hypothermia, though responses vary between patients except at temperature extremes. With decreasing temperature, burst lengths increase, and burst amplitudes and lengths decrease, while the spectral content of bursts remains constant. Conclusions: These findings support an existing theoretical model in which the common mechanism of burst suppression across diverse etiologies is the cyclical diffuse depletion of metabolic resources, and suggest the new hypothesis of local micro-network dropout to explain decreasing burst amplitudes at lower temperatures. Significance: These results pave the way for accurate noninvasive tracking of brain metabolic state during surgical procedures under deep hypothermia, and suggest new testable predictions about the network mechanisms underlying burst suppression.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant DP2-OD006454)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant DP1-OD003646)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant TR01-GM104948)en_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/J.CLINPH.2014.12.022en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcePMCen_US
dc.titleThe human burst suppression electroencephalogram of deep hypothermiaen_US
dc.typeArticleen_US
dc.identifier.citationBrandon Westover, M. et al. “The Human Burst Suppression Electroencephalogram of Deep Hypothermia.” Clinical Neurophysiology 126, 10 (October 2015): 1901–1914 © 2015 International Federation of Clinical Neurophysiologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.mitauthorBrown, Emery Neal
dc.contributor.mitauthorPurdon, Patrick L.
dc.relation.journalClinical Neurophysiologyen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2017-11-01T14:05:01Z
dspace.orderedauthorsBrandon Westover, M.; Ching, ShiNung; Kumaraswamy, Vishakhadatta M.; Akeju, Oluwaseun; Pierce, Eric; Cash, Sydney S.; Kilbride, Ronan; Brown, Emery N.; Purdon, Patrick L.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-2668-7819
dc.identifier.orcidhttps://orcid.org/0000-0001-5651-5060
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record