Show simple item record

dc.contributor.authorChandrasekhar, Vijay
dc.contributor.authorLin, Jie
dc.contributor.authorMorere, Olivier
dc.contributor.authorVeillard, Antoine
dc.contributor.authorDuan, Lingyu
dc.contributor.authorLiao, Qianli
dc.contributor.authorPoggio, Tomaso A
dc.date.accessioned2017-11-22T15:42:19Z
dc.date.available2017-11-22T15:42:19Z
dc.date.issued2017-05
dc.date.submitted2017-04
dc.identifier.isbn978-1-5090-6721-3
dc.identifier.issn2375-0359
dc.identifier.urihttp://hdl.handle.net/1721.1/112277
dc.description.abstractImage instance retrieval is the problem of retrieving images from a database which contain the same object. Convolutional Neural Network (CNN) based descriptors are becoming the dominant approach for generating global image descriptors for the instance retrieval problem. One major drawback of CNN-based global descriptors is that uncompressed deep neural network models require hundreds of megabytes of storage making them inconvenient to deploy in mobile applications or in custom hardware. In this work, we study the problem of neural network model compression focusing on the image instance retrieval task. We study quantization, coding, pruning and weight sharing techniques for reducing model size for the instance retrieval problem. We provide extensive experimental results on the trade-off between retrieval performance and model size for different types of networks on several data sets providing the most comprehensive study on this topic. We compress models to the order of a few MBs: Two orders of magnitude smaller than the uncompressed models while achieving negligible loss in retrieval performance1.en_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/DCC.2017.93en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT Web Domainen_US
dc.titleCompression of Deep Neural Networks for Image Instance Retrievalen_US
dc.typeArticleen_US
dc.identifier.citationChandrasekhar, Vijay et al. “Compression of Deep Neural Networks for Image Instance Retrieval.” 2017 Data Compression Conference (DCC), April 4-7 2017, Snowbird, Utah, USA, Institute of Electrical and Electronics Engineers (IEEE), May 2017 © 2017 Institute of Electrical and Electronics Engineers (IEEE)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMcGovern Institute for Brain Research at MITen_US
dc.contributor.mitauthorLiao, Qianli
dc.contributor.mitauthorPoggio, Tomaso A
dc.relation.journal2017 Data Compression Conference (DCC)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2017-11-16T18:51:21Z
dspace.orderedauthorsChandrasekhar, Vijay; Lin, Jie; Liao, Qianli; Morere, Olivier; Veillard, Antoine; Duan, Lingyu; Poggio, Tomasoen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-0076-621X
dc.identifier.orcidhttps://orcid.org/0000-0002-3944-0455
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record