Show simple item record

dc.contributor.authorChen, Francis X.
dc.contributor.authorRoig Noguera, Gemma
dc.contributor.authorIsik, Leyla
dc.contributor.authorBoix Bosch, Xavier
dc.contributor.authorPoggio, Tomaso A
dc.date.accessioned2017-11-22T16:03:27Z
dc.date.available2017-11-22T16:03:27Z
dc.date.issued2017-03
dc.identifier.urihttp://hdl.handle.net/1721.1/112279
dc.description.abstractHumans can recognize objects in a way that is invariant to scale, translation, and clutter. We use invariance theory as a conceptual basis, to computationally model this phenomenon. This theory discusses the role of eccentricity in human visual processing, and is a generalization of feedforward convolutional neural networks (CNNs). Our model explains some key psychophysical observations relating to invariant perception, while maintaining important similarities with biological neural architectures. To our knowledge, this work is the first to unify explanations of all three types of invariance, all while leveraging the power and neurological grounding of CNNs.en_US
dc.publisherAssociation for the Advancement of Artificial Intelligenceen_US
dc.relation.isversionofhttps://www.aaai.org/ocs/index.php/SSS/SSS17/paper/viewPaper/15360en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT Web Domainen_US
dc.titleEccentricity dependent deep neural networks: Modeling invariance in human visionen_US
dc.typeArticleen_US
dc.identifier.citationChen,Francis X. et al. "Eccentricity dependent deep neural networks: Modeling invariance in human vision." 2017 AAAI Spring Symposium Series, Science of Intelligence: Computational Principles of Natural and Artificial Intelligence, March 27-29 2017, Stanford, California, Association for the Advancement of Artificial Intelligence, March 2017 © 2017 Association for the Advancement of Artificial Intelligenceen_US
dc.contributor.departmentCenter for Brains, Minds, and Machinesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorChen, Francis X.
dc.contributor.mitauthorRoig Noguera, Gemma
dc.contributor.mitauthorIsik, Leyla
dc.contributor.mitauthorBoix Bosch, Xavier
dc.contributor.mitauthorPoggio, Tomaso A
dc.relation.journal2017 AAAI Spring Symposium Series, Science of Intelligence: Computational Principles of Natural and Artificial Intelligenceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2017-11-16T19:35:26Z
dspace.orderedauthorsChen,Francis X.;Roig,Gemma; Isik,Leyla; Boix,Xavier; Poggio,Tomasoen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-1909-257X
dc.identifier.orcidhttps://orcid.org/0000-0002-7470-0179
dc.identifier.orcidhttps://orcid.org/0000-0002-9255-0151
dc.identifier.orcidhttps://orcid.org/0000-0002-3944-0455
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record