Show simple item record

dc.contributor.authorNickel, Maximilian
dc.contributor.authorRosasco, Lorenzo
dc.contributor.authorPoggio, Tomaso A
dc.date.accessioned2017-11-27T15:33:36Z
dc.date.available2017-11-27T15:33:36Z
dc.date.issued2016-03
dc.identifier.urihttp://hdl.handle.net/1721.1/112286
dc.description.abstractLearning embeddings of entities and relations is an efficient and versatile method to perform machine learning on relational data such as knowledge graphs. In this work, we propose holographic embeddings (HOLE) to learn compositional vector space representations of entire knowledge graphs. The proposed method is related to holographic models of associative memory in that it employs circular correlation to create compositional representations. By using correlation as the compositional operator, HOLE can capture rich interactions but simultaneously remains efficient to compute, easy to train, and scalable to very large datasets. Experimentally, we show that holographic embeddings are able to outperform state-ofthe-Art methods for link prediction on knowledge graphs and relational learning benchmark datasets.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Award CCF-1231216)en_US
dc.publisherAssociation for the Advancement of Artificial Intelligenceen_US
dc.relation.isversionofhttps://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12484en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleHolographic embeddings of knowledge graphsen_US
dc.typeArticleen_US
dc.identifier.citationNickel,Maximilian et al. "Holographic embeddings of knowledge graphs." Thirtieth AAAI Conference on Artificial Intelligence, February 12-17 2016, Phoenix, Arizona, Association for the Advancement of Artificial Intelligence, March 2016 © 2016 Association for the Advancement of Artificial Intelligenceen_US
dc.contributor.departmentMcGovern Institute for Brain Research at MIT. Center for Brains, Minds, and Machinesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Computational and Statistical Learningen_US
dc.contributor.departmentMcGovern Institute for Brain Research at MITen_US
dc.contributor.mitauthorNickel, Maximilian
dc.contributor.mitauthorRosasco, Lorenzo
dc.contributor.mitauthorPoggio, Tomaso A
dc.relation.journalThirtieth AAAI Conference on Artificial Intelligenceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2017-11-17T18:01:07Z
dspace.orderedauthorsNickel,Maximilian; Rosasco, Lorenzo; Poggio, Tomasoen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5006-0827
dc.identifier.orcidhttps://orcid.org/0000-0001-6376-4786
dc.identifier.orcidhttps://orcid.org/0000-0002-3944-0455
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record