MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Condition numbers of indefinite rank 2 ghost Wishart matrices

Author(s)
Movassagh, Ramis; Edelman, Alan
Thumbnail
DownloadEdelman_Condition numbers.pdf (277.0Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Abstract We define an indefinite Wishart matrix as a matrix of the form A= W[superscript T]WΣ, where Σ is an indefinite diagonal matrix and W is a matrix of independent standard normals. We focus on the case where W is L×2 which has engineering applications. We obtain the distribution of the ratio of the eigenvalues of A. This distribution can be "folded" to give the distribution of the condition number. We calculate formulas for W real (β=1), complex (β=2), quaternionic (β=4) or any ghost 0 < β < ∞. We then corroborate our work by comparing them against numerical experiments.
Date issued
2015-10
URI
http://hdl.handle.net/1721.1/112295
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Linear Algebra and its Applications
Publisher
Elsevier BV
Citation
Movassagh, Ramis, and Alan Edelman. “Condition Numbers of Indefinite Rank 2 Ghost Wishart Matrices.” Linear Algebra and Its Applications, vol. 483, Oct. 2015, pp. 342–51.
Version: Author's final manuscript
ISSN
00240-3795

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.