Show simple item record

dc.contributor.authorMroueh, Youssef
dc.contributor.authorPoggio, Tomaso A
dc.contributor.authorVoinea, Stephen Constantin
dc.date.accessioned2017-11-28T19:15:40Z
dc.date.available2017-11-28T19:15:40Z
dc.date.issued2015-12
dc.identifier.urihttp://hdl.handle.net/1721.1/112309
dc.description.abstractWe analyze in this paper a random feature map based on a theory of invariance (I-theory) introduced in [1]. More specifically, a group invariant signal signature is obtained through cumulative distributions of group-transformed random projections. Our analysis bridges invariant feature learning with kernel methods, as we show that this feature map defines an expected Haar-integration kernel that is invariant to the specified group action. We show how this non-linear random feature map approximates this group invariant kernel uniformly on a set of N points. Moreover, we show that it defines a function space that is dense in the equivalent Invariant Reproducing Kernel Hilbert Space. Finally, we quantify error rates of the convergence of the empirical risk minimization, as well as the reduction in the sample complexity of a learning algorithm using such an invariant representation for signal classification, in a classical supervised learning setting.en_US
dc.publisherAssociation for Computing Machineryen_US
dc.relation.isversionofhttps://dl.acm.org/citation.cfm?id=2969413en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleLearning with group invariant features: A Kernel perspectiveen_US
dc.typeArticleen_US
dc.identifier.citationMroueh, Youssef, Stephen Voinea and Tomaso Poggio. "Learning with Group Invariant Features: A Kernel Perspective." Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 1 (NIPS '15), December 7-12, 2015, Montreal, Canada, Association of Computing Machinery, December 2015. © 2015 Association of Computing Machinery ACMen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.mitauthorPoggio, Tomaso A
dc.contributor.mitauthorVoinea, Stephen Constantin
dc.relation.journalProceedings of the 28th International Conference on Neural Information Processing Systems (NIPS '15)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2017-11-17T18:19:46Z
dspace.orderedauthorsMroueh, Youssef; Voinea, Stephen; Poggio, Tomasoen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-3944-0455
dc.identifier.orcidhttps://orcid.org/0000-0002-5727-9941
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record