MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Convex learning of multiple tasks and their structure

Author(s)
Ciliberto, Carlo; Mroueh, Youssef; Poggio, Tomaso A; Rosasco, Lorenzo
Thumbnail
Download1504.03101.pdf (297.9Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Reducing the amount of human supervision is a key problem in machine learning and a natural approach is that of exploiting the relations (structure) among different tasks. This is the idea at the core of multi-task learning. In this context a fundamental question is how to incorporate the tasks structure in the learning problem. We tackle this question by studying a general computational framework that allows to encode a-priori knowledge of the tasks structure in the form of a convex penalty; in this setting a variety of previously proposed methods can be recovered as special cases, including linear and non-linear approaches. Within this framework, we show that tasks and their structure can be efficiently learned considering a convex optimization problem that can be approached by means of block coordinate methods such as alternating minimization and for which we prove convergence to the global minimum.
Date issued
2015-07
URI
http://hdl.handle.net/1721.1/112313
Department
Center for Brains, Minds, and Machines; Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences
Journal
Journal of Machine Learning Research
Publisher
MIT Press
Citation
Ciliberto, Carlo et al. "Convex learning of multiple tasks and their structure." Journal of Machine Learning Research, Proceedings of the 32nd International Conference on Machine Learning, July 7-9 2015, Lille, France, MIT Press, July 2015 Copyright © 2015 The Author(s)
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.