MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Laser beacon tracking for high-accuracy attitude determination

Author(s)
Nguyen, Tam Nguyen Thuc; Cahoy, Kerri
Thumbnail
DownloadLaserbeacon_SmallSat_2015.pdf (1.183Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
CubeSat pointing capabilities have greatly improved in the past few years, paving the way for more sophisticated science and technology demonstration missions. Advances in attitude determination have led to the development of several CubeSat-sized attitude sensors capable of achieving fine attitude knowledge, most of which utilize natural light sources as references, such as in the case of star trackers and sun sensors. However, inertial-based attitude sensors often limit ground tracking capability of the satellite due to high ephemeris uncertainty of most CubeSats. Laser beacon tracking directly measures of the satellite’s attitude relative to a ground station or target, eliminating attitude errors induced in the coordinate frame conversion process. In addition, the use of a narrow-band artificial light source allows filtering techniques to be implemented, reducing the probability of false positives. In this paper, we present the development of a low-cost CubeSat-sized laser beacon camera along with detailed simulation development and results to demonstrate the attitude sensing performance of the module. The end-to-end simulation includes a laser link radiometry model, hardware model, atmospheric scintillation model, and sky radiance model at the beacon wavelength. Simulation results show that the laser beacon camera is capable of achieving an attitude accuracy of less than 0.1 mrad with a fade probability of less than 1% during daytime under most sky conditions for a satellite above 20o elevation in low-Earth orbit.
Date issued
2015-08
URI
http://hdl.handle.net/1721.1/112332
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Journal
Proceedings of the AIAA/USU Conference on Small Satellites
Publisher
Utah State University
Citation
Nguyen, Tam and Cahoy, Kerri. "Laser beacon tracking for high-accuracy attitude determination." Proceedings of the AIAA/USU Conference on Small Satellites, Technical Session VIII: Student Competition, SSC15-VIII-2. https://digitalcommons.usu.edu/smallsat/2015/all2015/55/ © 2015 The Author(s)
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Instagram YouTube

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.