MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nonequilibrium Lattice Fluid Modeling of Gas Solubility in HAB-6FDA Polyimide and Its Thermally Rearranged Analogues

Author(s)
Galizia, Michele; Stevens, Kevin A.; Paul, Donald R.; Freeman, Benny D.; Smith, Zachary P
Thumbnail
DownloadGalizia et al_Modeling TR polymers_revised manuscript.pdf (1.867Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
For the first time, a theoretical analysis of gas sorption, based on the nonequilibrium lattice fluid (NELF) model, in chemically imidized HAB-6FDA polyimide and its thermally rearranged analogues is presented. Because of the inaccessibility of pVT data in the rubbery region, the characteristic lattice fluid parameters of the polymers considered in this study were obtained from a collection of infinite dilution solubility data at multiple temperatures. Hydrogen, nitrogen, and methane sorption isotherms at 35 °C were fit to the NELF model using one adjustable parameter, i.e., the polymer–penetrant binary interaction parameter, k₁₂. The optimal value of k₁₂ for each polymer–penetrant pair was used to predict hydrogen, nitrogen, and methane sorption isotherms at other temperatures and at pressures up to 6 MPa. For carbon dioxide, a second adjustable parameter, the swelling coefficient, was introduced to account for sorption-induced matrix dilation. The ideal solubility–selectivity is also predicted for several gas pairs. The increase in gas sorption in thermally rearranged samples relative to their polyimide precursor is essentially due to entropic effects, i.e., to the increase in nonequilibrium fractional free volume during thermal rearrangement.
Date issued
2016-11
URI
http://hdl.handle.net/1721.1/112340
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
Macromolecules
Publisher
American Chemical Society (ACS)
Citation
Galizia, Michele et al. “Nonequilibrium Lattice Fluid Modeling of Gas Solubility in HAB-6FDA Polyimide and Its Thermally Rearranged Analogues.” Macromolecules 49, 22 (November 2016): 8768–8779 © 2016 American Chemical Society
Version: Original manuscript
ISSN
0024-9297
1520-5835

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.