MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparing Optimal Relocation Operations With Simulated Relocation Policies in One-Way Carsharing Systems

Author(s)
Jorge, Diana; Correia, Goncalo H. A.; Barnhart, Cynthia
Thumbnail
Download2017_09_29_13_54_22.pdf (1.140Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
One-way carsharing systems allow travelers to pick up a car at one station and return it to a different station, thereby causing vehicle imbalances across the stations. In this paper, a way to mitigate that imbalance is discussed, which is relocating vehicles between stations. For this purpose, two methods are presented, i.e., a new mathematical model to optimize the relocation operations that maximize the profitability of a carsharing service and a simulation model to study different real-time relocation policies. Both methods were applied to networks of stations in Lisbon, Portugal. Results show that relocating vehicles, using any of the methods developed, can produce significant increases in profit. For instance, in the case where the carsharing system provides maximum coverage of the city area, the imbalances in the network resulted in an operating loss of C1160/day when no relocation operations were performed. When relocation policies were applied, however, the simulation results indicate that profits of C854/day could be achieved, even with increased costs due to relocations. Using the mathematical model, the results are even better, with a reached profit of C3865.7/day. This improvement was achieved through reductions in the number of vehicles needed to satisfy the demand and the number of parking spaces needed at stations. These results demonstrate the importance of relocation operations for profitably providing a network of stations in one-way carsharing systems that covers the entire city, thus reaching a higher number of users.
Date issued
2014-03
URI
http://hdl.handle.net/1721.1/112401
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Journal
IEEE Transactions on Intelligent Transportation Systems
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Jorge, Diana et al. “Comparing Optimal Relocation Operations With Simulated Relocation Policies in One-Way Carsharing Systems.” IEEE Transactions on Intelligent Transportation Systems 15, 4 (August 2014): 1667–1675 © 2014 Institute of Electrical and Electronics Engineers (IEEE)
Version: Author's final manuscript
ISSN
1524-9050
1558-0016

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.