MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Probing new spin-independent interactions through precision spectroscopy in atoms with few electrons

Author(s)
Delaunay, Cédric; Frugiuele, Claudia; Fuchs, Elina; Soreq, Yotam
Thumbnail
DownloadPhysRevD.96.115002.pdf (1.113Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The very high precision of current measurements and theory predictions of spectral lines in few-electron atoms allows us to efficiently probe the existence of exotic forces between electrons, neutrons and protons. We investigate the sensitivity to new spin-independent interactions in transition frequencies (and their isotopic shifts) of hydrogen, helium and some heliumlike ions. We find that present data probe new regions of the force-carrier couplings to electrons and neutrons around the MeV mass range. We also find that, below few keV, the sensitivity to the electron coupling in precision spectroscopy of helium and positronium is comparable to that of the anomalous magnetic moment of the electron. Finally, we interpret our results in the dark-photon model where a new gauge boson is kinetically mixed with the photon. There, we show that helium transitions, combined with the anomalous magnetic moment of the electron, provide the strongest indirect bound from laboratory experiments above 100 keV.
Date issued
2017-12
URI
http://hdl.handle.net/1721.1/112613
Department
Massachusetts Institute of Technology. Center for Theoretical Physics; Massachusetts Institute of Technology. Department of Physics
Journal
Physical Review D
Publisher
American Physical Society
Citation
Delaunay, Cédric et al. "Probing new spin-independent interactions through precision spectroscopy in atoms with few electrons." Physical Review D 96, 11 (December 2017): 115002 © 2017 American Physical Society
Version: Final published version
ISSN
2470-0010
2470-0029

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.