Show simple item record

dc.contributor.authorEllis, Kevin M.
dc.contributor.authorSolar Lezama, Armando
dc.contributor.authorTenenbaum, Joshua B
dc.date.accessioned2017-12-07T16:11:29Z
dc.date.available2017-12-07T16:11:29Z
dc.date.issued2016
dc.identifier.issn1049-5258
dc.identifier.urihttp://hdl.handle.net/1721.1/112627
dc.description.abstractTowards learning programs from data, we introduce the problem of sampling programs from posterior distributions conditioned on that data. Within this setting, we propose an algorithm that uses a symbolic solver to efficiently sample programs. The proposal combines constraint-based program synthesis with sampling via random parity constraints. We give theoretical guarantees on how well the samples approximate the true posterior, and have empirical results showing the algorithm is efficient in practice, evaluating our approach on 22 program learning problems in the domains of text editing and computer-aided programming.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Award NSF-1161775)en_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research (Award FA9550-16-1-0012)en_US
dc.publisherNeural Information Processing Systems Foundationen_US
dc.relation.isversionofhttps://papers.nips.cc/paper/6082-sampling-for-bayesian-program-learningen_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceNeural Information Processing Systems (NIPS)en_US
dc.titleSampling for Bayesian program learningen_US
dc.typeArticleen_US
dc.identifier.citationKevin Ellis et al. "Sampling for Bayesian program learning." Advances in Neural Information Processing Systems (NIPS) (2016) © 2016 Neural Information Processing Systems Foundationen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorEllis, Kevin M.
dc.contributor.mitauthorSolar Lezama, Armando
dc.contributor.mitauthorTenenbaum, Joshua B
dc.relation.journalAdvances in Neural Information Processing Systems (NIPS)en_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2017-12-06T16:13:00Z
dspace.orderedauthorsKevin Ellis; Solar-Lezama, Armando; Tenenbaum, Joshen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-4926-6275
dc.identifier.orcidhttps://orcid.org/0000-0001-7604-8252
dc.identifier.orcidhttps://orcid.org/0000-0002-1925-2035
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record