Show simple item record

dc.contributor.authorSmith, James F.
dc.contributor.authorSwallow, Jessica Gabrielle
dc.contributor.authorKim, Jae Jin
dc.contributor.authorMaloney, John
dc.contributor.authorChen, Di
dc.contributor.authorBishop, Sean
dc.contributor.authorTuller, Harry L
dc.contributor.authorVan Vliet, Krystyn J
dc.date.accessioned2017-12-07T19:16:40Z
dc.date.available2017-12-07T19:16:40Z
dc.date.issued2017-05
dc.date.submitted2015-09
dc.identifier.issn1476-1122
dc.identifier.issn1476-4660
dc.identifier.urihttp://hdl.handle.net/1721.1/112638
dc.description.abstractActuator operation in increasingly extreme and remote conditions requires materials that reliably sense and actuate at elevated temperatures, and over a range of gas environments. Design of such materials will rely on high-temperature, high-resolution approaches for characterizing material actuation in situ. Here, we demonstrate a novel type of high-temperature, low-voltage electromechanical oxide actuator based on the model material Pr[subscript x]Ce[subscript 1−x]O[subscript 2−δ] (PCO). Chemical strain and interfacial stress resulted from electrochemically pumping oxygen into or out of PCO films, leading to measurable film volume changes due to chemical expansion. At 650 °C, nanometre-scale displacement and strain of >0.1% were achieved with electrical bias values <0.1 V, low compared to piezoelectrically driven actuators, with strain amplified fivefold by stress-induced structural deflection. This operando measurement of films ‘breathing’ at second-scale temporal resolution also enabled detailed identification of the controlling kinetics of this response, and can be extended to other electrochemomechanically coupled oxide films at extreme temperatures.en_US
dc.description.sponsorshipUnited States. Department of Energy. Office of Basic Energy Sciences (Award DE-SC0002633)en_US
dc.description.sponsorshipUnited States. Department of Energy (Grant DE-AC05-06OR23100)en_US
dc.language.isoen_US
dc.publisherSpringer Natureen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/nmat4898en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceProf. Van Vliet via Erja Kajosaloen_US
dc.titleDynamic chemical expansion of thin-film non-stoichiometric oxides at extreme temperaturesen_US
dc.typeArticleen_US
dc.identifier.citationSwallow, Jessica G. et al. “Dynamic Chemical Expansion of Thin-Film Non-Stoichiometric Oxides at Extreme Temperatures.” Nature Materials (May 2017): 4898 © 2017 Macmillan Publishers Limited, part of Springer Natureen_US
dc.contributor.departmentMIT Materials Research Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.approverVliet, Krystyn Van J.en_US
dc.contributor.mitauthorSwallow, Jessica Gabrielle
dc.contributor.mitauthorKim, Jae Jin
dc.contributor.mitauthorMaloney, John
dc.contributor.mitauthorChen, Di
dc.contributor.mitauthorBishop, Sean
dc.contributor.mitauthorTuller, Harry L
dc.contributor.mitauthorVan Vliet, Krystyn J
dc.relation.journalNature Materialsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsSwallow, Jessica G.; Kim, Jae Jin; Maloney, John M.; Chen, Di; Smith, James F.; Bishop, Sean R.; Tuller, Harry L.; Van Vliet, Krystyn J.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5799-3195
dc.identifier.orcidhttps://orcid.org/0000-0002-6853-811X
dc.identifier.orcidhttps://orcid.org/0000-0002-2187-9240
dc.identifier.orcidhttps://orcid.org/0000-0001-8339-3222
dc.identifier.orcidhttps://orcid.org/0000-0001-5735-0560
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record