Show simple item record

dc.contributor.authorNachman, Benjamin
dc.contributor.authorMetodiev, Eric Mario
dc.contributor.authorThaler, Jesse
dc.date.accessioned2017-12-08T23:23:08Z
dc.date.available2017-12-08T23:23:08Z
dc.date.issued2017-10
dc.date.submitted2017-09
dc.identifier.issn1029-8479
dc.identifier.issn1126-6708
dc.identifier.urihttp://hdl.handle.net/1721.1/112675
dc.description.abstractModern machine learning techniques can be used to construct powerful models for difficult collider physics problems. In many applications, however, these models are trained on imperfect simulations due to a lack of truth-level information in the data, which risks the model learning artifacts of the simulation. In this paper, we introduce the paradigm of classification without labels (CWoLa) in which a classifier is trained to distinguish statistical mixtures of classes, which are common in collider physics. Crucially, neither individual labels nor class proportions are required, yet we prove that the optimal classifier in the CWoLa paradigm is also the optimal classifier in the traditional fully-supervised case where all label information is available. After demonstrating the power of this method in an analytical toy example, we consider a realistic benchmark for collider physics: distinguishing quark- versus gluon-initiated jets using mixed quark/gluon training samples. More generally, CWoLa can be applied to any classification problem where labels or class proportions are unknown or simulations are unreliable, but statistical mixtures of the classes are available.en_US
dc.description.sponsorshipUnited States. Department of Energy (grant contract number DE-SC-00012567)en_US
dc.description.sponsorshipUnited States. Department of Energy (grant contract number DE-SC-00015476)en_US
dc.description.sponsorshipUnited States. Department of Energy (grant contract numberDE-AC02-05CH11231)en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/JHEP10(2017)174en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleClassification without labels: learning from mixed samples in high energy physicsen_US
dc.typeArticleen_US
dc.identifier.citationMetodiev, Eric M., et al. “Classification without Labels: Learning from Mixed Samples in High Energy Physics.” Journal of High Energy Physics, vol. 2017, no. 10, Oct. 2017.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Center for Theoretical Physicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.mitauthorMetodiev, Eric Mario
dc.contributor.mitauthorThaler, Jesse
dc.relation.journalJournal of High Energy Physicsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2017-11-23T05:16:14Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.orderedauthorsMetodiev, Eric M.; Nachman, Benjamin; Thaler, Jesseen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-2406-8160
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record