Show simple item record

dc.contributor.authorWang, Shitong
dc.contributor.authorQuan, Wei
dc.contributor.authorZhu, Zhi
dc.contributor.authorYang, Yong
dc.contributor.authorLiu, Qi
dc.contributor.authorRen, Yang
dc.contributor.authorZhang, Xiaoyi
dc.contributor.authorXu, Rui
dc.contributor.authorHong, Ye
dc.contributor.authorZhang, Zhongtai
dc.contributor.authorAmine, Khalil
dc.contributor.authorTang, Zilong
dc.contributor.authorLu, Jun
dc.contributor.authorLi, Ju
dc.date.accessioned2017-12-12T16:40:41Z
dc.date.available2017-12-12T16:40:41Z
dc.date.issued2017-09
dc.date.submitted2016-11
dc.identifier.issn2041-1723
dc.identifier.urihttp://hdl.handle.net/1721.1/112716
dc.description.abstractLithium titanate and titanium dioxide are two best-known high-performance electrodes that can cycle around 10,000 times in aprotic lithium ion electrolytes. Here we show there exists more lithium titanate hydrates with superfast and stable cycling. That is, water promotes structural diversity and nanostructuring of compounds, but does not necessarily degrade electrochemical cycling stability or performance in aprotic electrolytes. As a lithium ion battery anode, our multi-phase lithium titanate hydrates show a specific capacity of about 130 mA h g⁻¹ at ∼35 C (fully charged within ∼100 s) and sustain more than 10,000 cycles with capacity fade of only 0.001% per cycle. In situ synchrotron diffraction reveals no 2-phase transformations, but a single solid-solution behavior during battery cycling. So instead of just a nanostructured intermediate to be calcined, lithium titanate hydrates can be the desirable final destination.en_US
dc.description.sponsorshipUnited States. Department of Energy (Contract DE-AC0206CH11357)en_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/s41467-017-00574-9en_US
dc.rightsCreative Commons Attribution 4.0 Internationalen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleLithium titanate hydrates with superfast and stable cycling in lithium ion batteriesen_US
dc.typeArticleen_US
dc.identifier.citationWang, Shitong et al. “Lithium Titanate Hydrates with Superfast and Stable Cycling in Lithium Ion Batteries.” Nature Communications 8, 1 (September 2017): 627 © 2017 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineeringen_US
dc.contributor.mitauthorWang, Shitong
dc.contributor.mitauthorZhu, Zhi
dc.contributor.mitauthorLi, Ju
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2017-12-11T19:51:12Z
dspace.orderedauthorsWang, Shitong; Quan, Wei; Zhu, Zhi; Yang, Yong; Liu, Qi; Ren, Yang; Zhang, Xiaoyi; Xu, Rui; Hong, Ye; Zhang, Zhongtai; Amine, Khalil; Tang, Zilong; Lu, Jun; Li, Juen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-7022-5561
dc.identifier.orcidhttps://orcid.org/0000-0002-7841-8058
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record