Show simple item record

dc.contributor.authorLinderman, Scott W.
dc.contributor.authorJohnson, Matthew J.
dc.contributor.authorChen, Zhe
dc.contributor.authorWilson, Matthew A
dc.date.accessioned2017-12-14T14:20:24Z
dc.date.available2017-12-14T14:20:24Z
dc.date.issued2016-02
dc.date.submitted2016-01
dc.identifier.issn0165-0270
dc.identifier.urihttp://hdl.handle.net/1721.1/112744
dc.description.abstractBackground: Rodent hippocampal population codes represent important spatial information about the environment during navigation. Computational methods have been developed to uncover the neural representation of spatial topology embedded in rodent hippocampal ensemble spike activity. New method: We extend our previous work and propose a novel Bayesian nonparametric approach to infer rat hippocampal population codes during spatial navigation. To tackle the model selection problem, we leverage a Bayesian nonparametric model. Specifically, we apply a hierarchical Dirichlet process-hidden Markov model (HDP-HMM) using two Bayesian inference methods, one based on Markov chain Monte Carlo (MCMC) and the other based on variational Bayes (VB). Results: The effectiveness of our Bayesian approaches is demonstrated on recordings from a freely behaving rat navigating in an open field environment. Comparison with existing methods: The HDP-HMM outperforms the finite-state HMM in both simulated and experimental data. For HPD-HMM, the MCMC-based inference with Hamiltonian Monte Carlo (HMC) hyperparameter sampling is flexible and efficient, and outperforms VB and MCMC approaches with hyperparameters set by empirical Bayes. Conclusion: The Bayesian nonparametric HDP-HMM method can efficiently perform model selection and identify model parameters, which can used for modeling latent-state neuronal population dynamics.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant R01-MH06197)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant TR01-GM10498)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant ONR-MURI N00014-10-1-0936)en_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/J.JNEUMETH.2016.01.022en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcePMCen_US
dc.titleA Bayesian nonparametric approach for uncovering rat hippocampal population codes during spatial navigationen_US
dc.typeArticleen_US
dc.identifier.citationLinderman, Scott W. et al. “A Bayesian Nonparametric Approach for Uncovering Rat Hippocampal Population Codes During Spatial Navigation.” Journal of Neuroscience Methods 263 (April 2016): 36–47 © 2016 Elsevier B.V.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.departmentPicower Institute for Learning and Memoryen_US
dc.contributor.mitauthorWilson, Matthew A
dc.relation.journalJournal of Neuroscience Methodsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2017-12-12T14:33:02Z
dspace.orderedauthorsLinderman, Scott W.; Johnson, Matthew J.; Wilson, Matthew A.; Chen, Zheen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-7149-3584
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record