MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Kinetically selective inhibitors of histone deacetylase 2 (HDAC2) as cognition enhancers

Author(s)
Wagner, F. F.; Zhang, Y.-L.; Fass, D. M.; Gale, J. P.; Weïwer, M.; McCarren, P.; Fisher, S. L.; Kaya, T.; Zhao, W.-N.; Reis, S. A.; Hennig, K. M.; Thomas, M.; Lemercier, B. C.; Lewis, M. C.; Moyer, M. P.; Scolnick, E.; Haggarty, S. J.; Holson, E. B.; Joseph, Nadine; Guan, Jisong; Tsai, Li-Huei; ... Show more Show less
Thumbnail
Downloadc4sc02130d.pdf (770.3Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial 3.0 Unported https://creativecommons.org/licenses/by-nc/3.0/
Metadata
Show full item record
Abstract
Aiming towards the development of novel nootropic therapeutics to address the cognitive impairment common to a range of brain disorders, we set out to develop highly selective small molecule inhibitors of HDAC2, a chromatin modifying histone deacetylase implicated in memory formation and synaptic plasticity. Novel ortho-aminoanilide inhibitors were designed and evaluated for their ability to selectively inhibit HDAC2 versus the other Class I HDACs. Kinetic and thermodynamic binding properties were essential elements of our design strategy and two novel classes of ortho-aminoanilides, that exhibit kinetic selectivity (biased residence time) for HDAC2 versus the highly homologous isoform HDAC1, were identified. These kinetically selective HDAC2 inhibitors (BRD6688 and BRD4884) increased H4K12 and H3K9 histone acetylation in primary mouse neuronal cell culture assays, in the hippocampus of CKp25 mice, a model of neurodegenerative disease, and rescued the associated memory deficits of these mice in a cognition behavioural model. These studies demonstrate for the first time that selective pharmacological inhibition of HDAC2 is feasible and that inhibition of the catalytic activity of this enzyme may serve as a therapeutic approach towards enhancing the learning and memory processes that are affected in many neurological and psychiatric disorders.
Date issued
2014-10
URI
http://hdl.handle.net/1721.1/112747
Department
Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences; Picower Institute for Learning and Memory
Journal
Chemical Science
Publisher
Royal Society of Chemistry (RSC)
Citation
Wagner, F. F., et al. “Kinetically Selective Inhibitors of Histone Deacetylase 2 (HDAC2) as Cognition Enhancers.” Chemical Science, vol. 6, no. 1, 2015, pp. 804–15. © The Royal Society of Chemistry
Version: Final published version
ISSN
2041-6520
2041-6539

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.