Show simple item record

dc.contributor.authorChang, Michael B.
dc.contributor.authorUllman, Tomer David
dc.contributor.authorTorralba, Antonio
dc.contributor.authorTenenbaum, Joshua B
dc.date.accessioned2017-12-14T14:59:09Z
dc.date.available2017-12-14T14:59:09Z
dc.date.issued2017
dc.identifier.urihttp://hdl.handle.net/1721.1/112749
dc.description.abstractWe present the Neural Physics Engine (NPE), an object-based neural network architecture for learning predictive models of intuitive physics. We propose a factorization of a physical scene into composable object-based representations and also the NPE architecture whose compositional structure factorizes object dynamics into pairwise interactions. Our approach draws on the strengths of both symbolic and neural approaches: like a symbolic physics engine, the NPE is endowed with generic notions of objects and their interactions, but as a neural network it can also be trained via stochastic gradient descent to adapt to specific object properties and dynamics of different worlds. We evaluate the efficacy of our approach on simple rigid body dynamics in two-dimensional worlds. By comparing to less structured architectures, we show that our model's compositional representation of the structure in physical interactions improves its ability to predict movement, generalize to different numbers of objects, and infer latent properties of objects such as mass.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Award CCF-1231216)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (Grant N00014-16-1-2007)en_US
dc.publisherICLRen_US
dc.relation.isversionofhttp://www.iclr.cc/doku.php?id=iclr2017:mainen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleA Compositional Object-Based Approach to Learning Physical Dynamicsen_US
dc.typeArticleen_US
dc.identifier.citationChang, Michael B. et al. "A Compositional Object-Based Approach to Learning Physical Dynamics." 5th International Conference on Learning Representations (ICLR 2017), April 24-26 2017, Toulon, France, ICLR, 2017en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorChang, Michael B.
dc.contributor.mitauthorUllman, Tomer David
dc.contributor.mitauthorTorralba, Antonio
dc.contributor.mitauthorTenenbaum, Joshua B
dc.relation.journal5th International Conference on Learning Representations (ICLR 2017)en_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2017-12-08T17:23:06Z
dspace.orderedauthorsChang, Michael B.; Ullman,Tomer; Torralba, Antonio; Tenenbaum, Joshua B.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-1722-2382
dc.identifier.orcidhttps://orcid.org/0000-0003-4915-0256
dc.identifier.orcidhttps://orcid.org/0000-0002-1925-2035
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record