MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep convolutional inverse graphics network

Author(s)
Kohli, Pushmeet; Kulkarni, Tejas Dattatraya; Whitney, William F.; Tenenbaum, Joshua B
Thumbnail
Download5851-deep-convolutional-inverse-graphics-network.pdf (3.808Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
This paper presents the Deep Convolution Inverse Graphics Network (DC-IGN), a model that aims to learn an interpretable representation of images, disentangled with respect to three-dimensional scene structure and viewing transformations such as depth rotations and lighting variations. The DC-IGN model is composed of multiple layers of convolution and de-convolution operators and is trained using the Stochastic Gradient Variational Bayes (SGVB) algorithm [10]. We propose a training procedure to encourage neurons in the graphics code layer to represent a specific transformation (e.g. pose or light). Given a single input image, our model can generate new images of the same object with variations in pose and lighting. We present qualitative and quantitative tests of the model's efficacy at learning a 3D rendering engine for varied object classes including faces and chairs.
Date issued
2015
URI
http://hdl.handle.net/1721.1/112752
Department
Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences
Journal
Proceedings of the 28th International Conference on Neural Information Processing Systems (NIPS 2015)
Publisher
Neural Information Processing Systems Foundation, Inc
Citation
Kulkarni, Tejas D. et al. "Deep convolutional inverse graphics network." Proceedings of the 28th International Conference on Neural Information Processing Systems (NIPS 2015), December 7-12 2015, Montreal, Canada, Neural Information Processing Systems Foundation, 2015 © 2015 Neural Information Processing Systems Foundation, Inc
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.