MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Calcified plaque modification alters local drug delivery in the treatment of peripheral atherosclerosis

Author(s)
Zani, Brett; Stanley, James; Muraj, Benny; Knutson, Jennifer; Kohler, Robert; Markham, Peter; Nikanorov, Alexander; Tzafriri, A Rami; Garcia Polite, Fernando; Edelman, Elazer R; ... Show more Show less
Thumbnail
Download1-s2.0-S0168365917308209-main.pdf (2.099Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Background: Calcific atherosclerosis is a major challenge to intraluminal drug delivery in peripheral artery disease (PAD). Objectives: We evaluated the effects of orbital atherectomy on intraluminal paclitaxel delivery to human peripheral arteries with substantial calcified plaque. Methods: Diagnostic angiography and 3-D rotational imaging of five fresh human lower limbs revealed calcification in all main arteries. The proximal or distal segment of each artery was treated using an orbital atherectomy system (OAS) under simulated blood flow and fluoroscopy. Explanted arterial segments underwent either histomorphometric assessment of effect or tracking of [superscript 14]C-labeled or fluorescent–labeled paclitaxel. Radiolabeled drug quantified bulk delivery and fluorescent label established penetration of drug over finer spatial domain in serial microscopic sections. Results: were interpreted using a mathematical model of binding-diffusion mediated arterial drug distribution. Results Lesion composition affected paclitaxel absorption and distribution in cadaveric human peripheral arteries. Pretreatment imaging calcium scores in control femoropopliteal arterial segments correlated with a log-linear decline in the bulk absorption rate-constant of [superscript 14]C-labeled, declining 5.5-fold per calcified quadrant (p = 0.05, n = 7). Compared to controls, OAS-treated femoropopliteal segments exhibited 180 μm thinner intima (p < 0.001), 45% less plaque calcification, and 2 log orders higher paclitaxel bulk absorption rate-constants. Correspondingly, fluorescent paclitaxel penetrated deeper in OAS-treated femoropopliteal segments compared to controls, due to a 70% increase in diffusivity (p < 0.001). Conclusions These data illustrate that calcified plaque limited intravascular drug delivery, and controlled OAS treatment of calcific plaques resulted in greater drug permeability and improved adjunct drug delivery to diseased arteries.Peripheral artery disease Keywords: Drug coated balloons, Drug eluting stents, Atherectomy, Orbital atherectomy, calcified plaque, Paclitaxel
Date issued
2017-09
URI
http://hdl.handle.net/1721.1/112760
Department
Massachusetts Institute of Technology. Institute for Medical Engineering & Science; Harvard University--MIT Division of Health Sciences and Technology
Journal
Journal of Controlled Release
Publisher
Elsevier
Citation
Tzafriri, Abraham R., et al. “Calcified Plaque Modification Alters Local Drug Delivery in the Treatment of Peripheral Atherosclerosis.” Journal of Controlled Release, vol. 264, Oct. 2017, pp. 203–10.
Version: Final published version
ISSN
0168-3659

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.