Show simple item record

dc.contributor.authorChoi, Changhyun
dc.contributor.authorRus, Daniela L
dc.date.accessioned2017-12-15T19:16:09Z
dc.date.available2017-12-15T19:16:09Z
dc.date.issued2016-05
dc.identifier.isbn978-1-4673-8026-3
dc.identifier.urihttp://hdl.handle.net/1721.1/112769
dc.description.abstractIn this paper we present a visual verification approach for robotic assembly manipulation which enables robots to verify their assembly state. Given shape models of objects and their expected placement configurations, our approach estimates the probability of the success of the assembled state using a depth sensor. The proposed approach takes into account uncertainties in object pose. Probability distributions of depth and surface normal depending on the uncertainties are estimated to classify the assembly state in a Bayesian formulation. The effectiveness of our approach is validated in comparative experiments with other approaches.en_US
dc.description.sponsorshipBoeing Companyen_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/ICRA.2016.7487786en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT Web Domainen_US
dc.titleProbabilistic visual verification for robotic assembly manipulationen_US
dc.typeArticleen_US
dc.identifier.citationChoi, Changhyun, and Daniela Rus. “Probabilistic Visual Verification for Robotic Assembly Manipulation.” 2016 IEEE International Conference on Robotics and Automation (ICRA) (May 2016).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorChoi, Changhyun
dc.contributor.mitauthorRus, Daniela L
dc.relation.journal2016 IEEE International Conference on Robotics and Automation (ICRA)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsChoi, Changhyun; Rus, Danielaen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-4715-3576
dc.identifier.orcidhttps://orcid.org/0000-0001-5473-3566
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record