Show simple item record

dc.contributor.authorBandyopadhyay, Tirthankar
dc.contributor.authorWon, Kok Sung
dc.contributor.authorHsu, David
dc.contributor.authorLee, Wee Sun
dc.contributor.authorFrazzoli, Emilio
dc.contributor.authorRus, Daniela L
dc.date.accessioned2017-12-15T20:30:10Z
dc.date.available2017-12-15T20:30:10Z
dc.date.issued2013-02
dc.identifier.isbn978-3-642-36278-1
dc.identifier.isbn978-3-642-36279-8
dc.identifier.issn1610-7438
dc.identifier.issn1610-742X
dc.identifier.urihttp://hdl.handle.net/1721.1/112770
dc.description.abstractAs robots venture into new application domains as autonomous vehicles on the road or as domestic helpers at home, they must recognize human intentions and behaviors in order to operate effectively. This paper investigates a new class of motion planning problems with uncertainty in human intention. We propose a method for constructing a practical model by assuming a finite set of unknown intentions. We first construct a motion model for each intention in the set and then combine these models together into a single Mixed Observability Markov Decision Process (MOMDP), which is a structured variant of the more common Partially Observable Markov Decision Process (POMDP). By leveraging the latest advances in POMDP/MOMDP approximation algorithms, we can construct and solve moderately complex models for interesting robotic tasks. Experiments in simulation and with an autonomous vehicle show that the proposed method outperforms common alternatives because of its ability in recognizing intentions and using the information effectively for decision making.en_US
dc.description.sponsorshipSingapore-MIT Alliance for Research and Technology (SMART) (grant R-252- 000-447-592)en_US
dc.description.sponsorshipSingapore-MIT GAMBIT Game Lab (grant R-252-000-398-490)en_US
dc.description.sponsorshipSingapore. Ministry of Education (AcRF grant 2010-T2-2-071)en_US
dc.language.isoen_US
dc.publisherSpringer-Velagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/978-3-642-36279-8_29en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT Web Domainen_US
dc.titleIntention-Aware Motion Planningen_US
dc.typeArticleen_US
dc.identifier.citationBandyopadhyay, Tirthankar, Kok Sung Won, Emilio Frazzoli, David Hsu, Wee Sun Lee, and Daniela Rus. “Intention-Aware Motion Planning.” Algorithmic Foundations of Robotics X (2013): 475–491.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorFrazzoli, Emilio
dc.contributor.mitauthorRus, Daniela L
dc.relation.journalAlgorithmic Foundations of Robotics Xen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsBandyopadhyay, Tirthankar; Won, Kok Sung; Frazzoli, Emilio; Hsu, David; Lee, Wee Sun; Rus, Danielaen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-0505-1400
dc.identifier.orcidhttps://orcid.org/0000-0001-5473-3566
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record