Show simple item record

dc.contributor.authorZalewski, Aaron D.
dc.contributor.authorLong, William J
dc.contributor.authorJohnson, Alistair Edward William
dc.contributor.authorMark, Roger G
dc.contributor.authorLehman, Li-Wei
dc.date.accessioned2017-12-19T20:13:30Z
dc.date.available2017-12-19T20:13:30Z
dc.date.issued2017-04
dc.date.submitted2017-02
dc.identifier.isbn978-1-5090-4179-4
dc.identifier.urihttp://hdl.handle.net/1721.1/112809
dc.description.abstractModern intensive care units (ICUs) collect large volumes of data in monitoring critically ill patients. Clinicians in the ICUs face the challenge of interpreting large volumes of high-dimensional data to diagnose and treat patients. In this work, we explore the use of Hierarchical Dirichlet Processes (HDP) as a Bayesian nonparametric framework to infer patients' states of health by combining multiple sources of data. In particular, we employ HDP to combine clinical time series and text from the nursing progress notes in a probabilistic topic modeling framework for patient risk stratification. Given a patient cohort, we use HDP to infer latent 'topics' shared across multimodal patient data from the entire cohort. Each topic is modeled as a multinomial distribution over a vocabulary of codewords, defined over heterogeneous data sources. We evaluate the clinical utility of the learned topic structure using the first 24-hour ICU data from over 17,000 adult patients in the MIMIC-II database to estimate patients' risks of in-hospital mortality. Our results demonstrate that our approach provides a viable framework for combining different data modalities to model patient's states of health, and can potentially be used to generate alerts to identify patients at high risk of hospital mortality.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant R01-EB017205)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant R01-EB001659)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant R01GM104987)en_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/BHI.2017.7897302en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.titleEstimating patient's health state using latent structure inferred from clinical time series and texten_US
dc.typeArticleen_US
dc.identifier.citationZalewski, Aaron et al. “Estimating Patient’s Health State Using Latent Structure Inferred from Clinical Time Series and Text.” 2017 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), February 16-19 2017, Institute of Electrical and Electronics Engineers (IEEE), April 13 2017 © 2017 Institute of Electrical and Electronics Engineers (IEEE)en_US
dc.contributor.departmentInstitute for Medical Engineering and Scienceen_US
dc.contributor.mitauthorZalewski, Aaron D.
dc.contributor.mitauthorLong, William J
dc.contributor.mitauthorJohnson, Alistair Edward William
dc.contributor.mitauthorMark, Roger G
dc.contributor.mitauthorLehman, Li-Wei
dc.relation.journal2017 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2017-12-19T14:12:43Z
dspace.orderedauthorsZalewski, Aaron; Long, William; Johnson, Alistair E. W.; Mark, Roger G.; Lehman, Li-wei H.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7749-1034
dc.identifier.orcidhttps://orcid.org/0000-0002-8735-3014
dc.identifier.orcidhttps://orcid.org/0000-0002-6318-2978
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record