MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Star Formation at at z = 2.481 in the Lensed Galaxy SDSS J1110+6459. II. What is Missed at the Normal Resolution of the Hubble Space Telescope?

Author(s)
Rigby, J. R.; Johnson, T. L.; Sharon, K.; Whitaker, K.; Gladders, M. D.; Florian, M.; Lotz, J.; Wuyts, E.; Bayliss, Matthew B; ... Show more Show less
Thumbnail
DownloadRigby_2017_ApJ_843_79(1).pdf (1.269Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
For lensed galaxy SGAS J111020.0+645950.8 at redshift z = 2.481, which is magnified by a factor of 28 ± 8, we analyze the morphology of star formation, as traced by rest-frame ultraviolet emission, in both the highly magnified source plane and simulations of how this galaxy would appear without lensing magnification. Were this galaxy not lensed, but rather drawn from a Hubble Space Telescope deep field, we would conclude that almost all its star formation arises from an exponential disk (Sérsic index of 1.0 ± 0.4) with an effective radius of r[subscript e]=2.7 ± 0.3 measured from two-dimensional fitting to F606W using Galfit, and r[subscript e]=1.9 ± 0.1 kpc measured by fitting a radial profile to F606W elliptical isophotes. At the normal spatial resolution of the deep fields, there is no sign of clumpy star formation within SGAS J111020.0+645950.8. However, the enhanced spatial resolution enabled by gravitational lensing tells a very different story; much of the star formation arises in two dozen clumps with sizes of r = 30–50 pc spread across the 7 kpc length of the galaxy. The color and spatial distribution of the diffuse component suggests that still-smaller clumps are unresolved. Despite this clumpy, messy morphology, the radial profile is still well-characterized by an exponential profile. In this lensed galaxy, stars are forming in complexes with sizes well below 100 pc; such sizes are wholly unexplored by surveys of galaxy evolution at 1 < z < 3.
Date issued
2017-07
URI
http://hdl.handle.net/1721.1/112928
Department
Massachusetts Institute of Technology. Department of Physics
Journal
The Astrophysical Journal
Publisher
The American Astronomical Society
Citation
Rigby, J. R., et al. “Star Formation at Z = 2.481 in the Lensed Galaxy SDSS J1110+6459. II. What Is Missed at the Normal Resolution of the Hubble Space Telescope ?” The Astrophysical Journal, vol. 843, no. 2, July 2017, p. 79. © 2017 The American Astronomical Society
Version: Final published version
ISSN
1538-4357
0004-637X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.