Convergence of DNA methylation and phosphorothioation epigenetics in bacterial genomes
Author(s)
Chen, Chao; Wang, Lianrong; Chen, Si; Wu, Xiaolin; Gu, Meijia; Chen, Xi; Jiang, Susu; Wang, Yunfu; Deng, Zixin; Chen, Shi; Dedon, Peter C; ... Show more Show less
DownloadChen-2017-Convergence of DNA methylation and p.pdf (969.2Kb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
Explosive growth in the study of microbial epigenetics has revealed a diversity of chemical structures and biological functions of DNA modifications in restriction-modification (R-M) and basic genetic processes. Here, we describe the discovery of shared consensus sequences for two seemingly unrelated DNA modification systems, [superscript 6m]A methylation and phosphorothioation (PT), in which sulfur replaces a nonbridging oxygen in the DNA backbone. Mass spectrometric analysis of DNA from Escherichia coli B7A and Salmonella enterica serovar Cerro 87, strains possessing PT-based R-M genes, revealed d(G[subscript PS] [superscript 6m]A) dinucleotides in the G[subscript PS] [superscript 6m]AAC consensus representing ∼5% of the 1,100 to 1,300 PT-modified d(G[subscript PS] A) motifs per genome, with [superscript 6m]A arising from a yet-to-be-identified methyltransferase. To further explore PT and 6m A in another consensus sequence, G[subscript PS] [superscript 6m]ATC, we engineered a strain of E. coli HST04 to express Dnd genes from Hahella chejuensis KCTC2396 (PT in G[subscript PS] ATC) and Dam methyltransferase from E. coli DH10B ( [superscript 6m] A in G [superscript 6m] ATC). Based on this model, in vitro studies revealed reduced Dam activity in G PS ATC-containing oligonucleotides whereas single-molecule real-time sequencing of HST04 DNA revealed [superscript 6m] A in all 2,058 G[subscript PS] ATC sites (5% of 37,698 total GATC sites). This model system also revealed temperature-sensitive restriction by DndFGH in KCTC2396 and B7A, which was exploited to discover that [superscript 6m] A can substitute for PT to confer resistance to restriction by the DndFGH system. These results point to complex but unappreciated interactions between DNA modification systems and raise the possibility of coevolution of interacting systems to facilitate the function of each.
Date issued
2017-04Department
Massachusetts Institute of Technology. Department of Biological EngineeringJournal
Proceedings of the National Academy of Sciences
Publisher
National Academy of Sciences (U.S.)
Citation
Chen, Chao et al. “Convergence of DNA Methylation and Phosphorothioation Epigenetics in Bacterial Genomes.” Proceedings of the National Academy of Sciences 114, 17 (April 2017): 4501–4506 © 2017 National Academy of Sciences
Version: Final published version
ISSN
0027-8424
1091-6490