Show simple item record

dc.contributor.authorBrakerski, Zvika
dc.contributor.authorVaikuntanathan, Vinod
dc.contributor.authorWee, Hoeteck
dc.contributor.authorWichs, Daniel
dc.date.accessioned2017-12-29T19:18:44Z
dc.date.available2017-12-29T19:18:44Z
dc.date.issued2016-01
dc.identifier.isbn978-1-4503-4057-1
dc.identifier.urihttp://hdl.handle.net/1721.1/112985
dc.description.abstractWe show how to securely obfuscate conjunctions, which are functions f(x[subscript 1], . . . , x[subscript n]) = ∧[subscript i∈I] y[superscript i] where I ⊆ [n] and each literal y[subscript i] is either just x[subscript i] or ¬x[subscript i] e.g., f(x[subscript 1], . . . , x_n) = x[subscript 1] ⊆ ¬ x[subscript 3] ⊆ ¬ x[subscript 7] · · · ⊆ x[subscript n−1]. Whereas prior work of Brakerski and Rothblum (CRYPTO 2013) showed how to achieve this using a non-standard object called cryptographic multilinear maps, our scheme is based on an “entropic” variant of the Ring Learning with Errors (Ring LWE) assumption. As our core tool, we prove that hardness assumptions on the recent multilinear map construction of Gentry, Gorbunov and Halevi (TCC 2015) can be established based on entropic Ring LWE. We view this as a first step towards proving the security of additional multilinear map based constructions, and in particular program obfuscators, under standard assumptions. Our scheme satisfies virtual black box (VBB) security, meaning that the obfuscated program reveals nothing more than black-box access to f as an oracle, at least as long as (essentially) the conjunction is chosen from a distribution having sufficient entropy.en_US
dc.language.isoen_US
dc.publisherAssociation for Computing Machineryen_US
dc.relation.isversionofhttp://dx.doi.org/10.1145/2840728.2840764en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT Web Domainen_US
dc.titleObfuscating Conjunctions under Entropic Ring LWEen_US
dc.typeArticleen_US
dc.identifier.citationBrakerski, Zvika, et al. "Obfuscating Conjunctions under Entropic Ring LWE." Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science - ITCS '16, 14-17 January, 2016, Cambridge, MA, ACM Press, 2016, pp. 147–56.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorVaikuntanathan, Vinod
dc.relation.journalProceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science - ITCS '16en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsBrakerski, Zvika; Vaikuntanathan, Vinod; Wee, Hoeteck; Wichs, Danielen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-2666-0045
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record