Show simple item record

dc.contributor.authorHoogendoorn, Mark
dc.contributor.authorel Hassouni, Ali
dc.contributor.authorMok, Kwongyen
dc.contributor.authorGhassemi, Marzyeh
dc.contributor.authorSzolovits, Peter
dc.date.accessioned2017-12-29T19:45:54Z
dc.date.available2017-12-29T19:45:54Z
dc.date.issued2016-10
dc.date.submitted2016-08
dc.identifier.isbn978-1-4577-0220-4
dc.identifier.urihttp://hdl.handle.net/1721.1/112991
dc.description.abstractInformation in Electronic Medical Records (EMRs) can be used to generate accurate predictions for the occurrence of a variety of health states, which can contribute to more pro-active interventions. The very nature of EMRs does make the application of off-the-shelf machine learning techniques difficult. In this paper, we study two approaches to making predictions that have hardly been compared in the past: (1) extracting high-level (temporal) features from EMRs and building a predictive model, and (2) defining a patient similarity metric and predicting based on the outcome observed for similar patients. We analyze and compare both approaches on the MIMIC-II ICU dataset to predict patient mortality and find that the patient similarity approach does not scale well and results in a less accurate model (AUC of 0.68) compared to the modeling approach (0.84). We also show that mortality can be predicted within a median of 72 hours.en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/EMBC.2016.7591229en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT Web Domainen_US
dc.titlePrediction using patient comparison vs. modeling: A case study for mortality predictionen_US
dc.typeArticleen_US
dc.identifier.citationHoogendoorn, Mark, et al. "Prediction Using Patient Comparison vs. Modeling: A Case Study for Mortality Prediction." 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 16-20 August, 2016, Orlando, FL, IEEE, 2016, pp. 2464–67.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorGhassemi, Marzyeh
dc.contributor.mitauthorSzolovits, Peter
dc.relation.journal38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsHoogendoorn, Mark; el Hassouni, Ali; Mok, Kwongyen; Ghassemi, Marzyeh; Szolovits, Peteren_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-6349-7251
dc.identifier.orcidhttps://orcid.org/0000-0001-8411-6403
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record