Show simple item record

dc.contributor.authorPimentel, Marco A. F.
dc.contributor.authorClifton, David A.
dc.contributor.authorGhassemi, Marzyeh
dc.contributor.authorSzolovits, Peter
dc.contributor.authorFeng, Mengling
dc.contributor.authorNaumann, Tristan Josef
dc.contributor.authorBrennan, Thomas Patrick
dc.date.accessioned2017-12-29T20:10:41Z
dc.date.available2017-12-29T20:10:41Z
dc.date.issued2015-07
dc.identifier.urihttp://hdl.handle.net/1721.1/112992
dc.description.abstractThe ability to determine patient acuity (or severity of illness) has immediate practical use for clinicians. We evaluate the use of multivariate timeseries modeling with the multi-task Gaussian process (GP) models using noisy, incomplete, sparse, heterogeneous and unevenly-sampled clinical data, including both physiological signals and clinical notes. The learned multi-task GP (MTGP) hyperparameters are then used to assess and forecast patient acuity. Experiments were conducted with two real clinical data sets acquired from ICU patients: firstly, estimating cerebrovascular pressure reactivity, an important indicator of secondary damage for traumatic brain injury patients, by learning the interactions between intracranial pressure and mean arterial blood pressure signals, and secondly, mortality prediction using clinical progress notes. In both cases, MTGPs provided improved results: an MTGP model provided better results than single-task GP models for signal interpolation and forecasting (0.91 vs 0.69 RMSE), and the use of MTGP hyperparameters obtained improved results when used as additional classification features (0.812 vs 0.788 AUC).en_US
dc.description.sponsorshipIntel Science and Technology Center for Big Dataen_US
dc.description.sponsorshipNational Institutes of Health. (U.S.). National Library of Medicine (Biomedical Informatics Research Training Grant NIH/NLM 2T15 LM007092-22)en_US
dc.description.sponsorshipNational Institute of Biomedical Imaging and Bioengineering (U.S.) (R01 Grant EB001659)en_US
dc.description.sponsorshipSingapore. Agency for Science, Technology and Research (Graduate Scholarship)en_US
dc.language.isoen_US
dc.publisherAssociation for the Advancement of Artificial Intelligenceen_US
dc.relation.isversionofhttps://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9393/9279en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT Web Domainen_US
dc.titleA multivariate timeseries modeling approach to severity of illness assessment and forecasting in ICU with sparse, heterogeneous clinical dataen_US
dc.typeArticleen_US
dc.identifier.citationGhassemi, Marzyeh et al. "A multivariate timeseries modeling approach to severity of illness assessment and forecasting in ICU with sparse, heterogeneous clinical data." Proceedings of the 29th AAAI Conference on Artificial Intelligence, 25-30 January, 2015, Austin, Texas, AAII, 2015, pp. 446-453.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Medical Engineering & Scienceen_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorGhassemi, Marzyeh
dc.contributor.mitauthorNaumann, Tristan
dc.contributor.mitauthorBrennan, Thomas P
dc.contributor.mitauthorSzolovits, Peter
dc.contributor.mitauthorFeng, Mengling
dc.relation.journalProceedings of the 29th AAAI Conference on Artificial Intelligenceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsGhassemi, Marzyeh; Pimentel, Marco A. F.; Naumann, Tristan; Brennan, Thomas; Clifton, David A.; Svolovits, Peter; Feng, Menglingen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-6349-7251
dc.identifier.orcidhttps://orcid.org/0000-0003-2150-1747
dc.identifier.orcidhttps://orcid.org/0000-0001-8411-6403
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record