Show simple item record

dc.contributor.authorKhosla, Aditya
dc.contributor.authorRaju, Akhil G.
dc.contributor.authorTorralba, Antonio
dc.contributor.authorOliva, Aude
dc.date.accessioned2017-12-29T20:12:30Z
dc.date.available2017-12-29T20:12:30Z
dc.date.issued2016-02
dc.date.submitted2015-12
dc.identifier.isbn978-1-4673-8391-2
dc.identifier.urihttp://hdl.handle.net/1721.1/112993
dc.description.abstractProgress in estimating visual memorability has been limited by the small scale and lack of variety of benchmark data. Here, we introduce a novel experimental procedure to objectively measure human memory, allowing us to build LaMem, the largest annotated image memorability dataset to date (containing 60,000 images from diverse sources). Using Convolutional Neural Networks (CNNs), we show that fine-tuned deep features outperform all other features by a large margin, reaching a rank correlation of 0.64, near human consistency (0.68). Analysis of the responses of the high-level CNN layers shows which objects and regions are positively, and negatively, correlated with memorability, allowing us to create memorability maps for each image and provide a concrete method to perform image memorability manipulation. This work demonstrates that one can now robustly estimate the memorability of images from many different classes, positioning memorability and deep memorability features as prime candidates to estimate the utility of information for cognitive systems. Our model and data are available at: http://memorability.csail.mit.edu.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant 1532591)en_US
dc.description.sponsorshipMcGovern Institute for Brain Research at MIT. Neurotechnology (MINT) Programen_US
dc.description.sponsorshipMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory. MIT Big Data Initiativeen_US
dc.description.sponsorshipGoogle (Firm)en_US
dc.description.sponsorshipXerox Corporationen_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/ICCV.2015.275en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT Web Domainen_US
dc.titleUnderstanding and Predicting Image Memorability at a Large Scaleen_US
dc.typeArticleen_US
dc.identifier.citationKhosla, Aditya, et al. "Understanding and Predicting Image Memorability at a Large Scale." 2015 IEEE International Conference on Computer Vision (ICCV), 7-13 December 2015, Santiago, Chile, IEEE, 2015, pp. 2390–98.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Media Laboratoryen_US
dc.contributor.mitauthorKhosla, Aditya
dc.contributor.mitauthorRaju, Akhil G.
dc.contributor.mitauthorTorralba, Antonio
dc.contributor.mitauthorOliva, Aude
dc.relation.journal2015 IEEE International Conference on Computer Vision (ICCV)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsKhosla, Aditya; Raju, Akhil S.; Torralba, Antonio; Oliva, Audeen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-0007-3352
dc.identifier.orcidhttps://orcid.org/0000-0003-4915-0256
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record