Noncollinear Magnetic Structure and Multipolar Order in Eu₂Ir₂O₇
Author(s)
Wang, Yilin; Weng, Hongming; Dai, Xi; Fu, Liang
DownloadPhysRevLett.119.187203.pdf (756.7Kb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
The magnetic properties of the pyrochlore iridate material Eu₂Ir₂O₇ (5d⁵) have been studied based on first principles calculations, where the crystal field splitting Δ, spin-orbit coupling (SOC) λ, and Coulomb interaction U within Ir 5d orbitals all play significant roles. The ground state phase diagram has been obtained with respect to the strength of SOC and Coulomb interaction U, where a stable antiferromagnetic ground state with all-in–all-out (AIAO) spin structure has been found. In addition, another antiferromagnetic state with energy close to AIAO has also been found to be stable. The calculated nonlinear magnetization of the two stable states both have the d-wave pattern but with a π/4 phase difference, which can perfectly explain the experimentally observed nonlinear magnetization pattern. Compared with the results of the nondistorted structure, it turns out that the trigonal lattice distortion is crucial for stabilizing the AIAO state in Eu₂Ir₂O₇. Furthermore, besides large dipolar moments, we also find considerable octupolar moments in the magnetic states.
Date issued
2017-11Department
Massachusetts Institute of Technology. Department of PhysicsJournal
Physical Review Letters
Publisher
American Physical Society
Citation
Wang, Yilin et al. "Noncollinear Magnetic Structure and Multipolar Order in Eu₂Ir₂O₇." Physical Review Letters 119, 18 (November 2017): 187203 © 2017 American Physical Society
Version: Final published version
ISSN
0031-9007
1079-7114