Show simple item record

dc.contributor.authorHolovský, Jakub
dc.contributor.authorJean, Joel
dc.contributor.authorMahony, Thomas Stephen
dc.contributor.authorBozyigit, Jonas Denis
dc.contributor.authorSponseller, Melany Christine
dc.contributor.authorBawendi, Moungi G
dc.contributor.authorBulovic, Vladimir
dc.date.accessioned2018-01-08T16:11:15Z
dc.date.available2018-01-08T16:11:15Z
dc.date.issued2017-10
dc.date.submitted2017-09
dc.identifier.issn2380-8195
dc.identifier.urihttp://hdl.handle.net/1721.1/113012
dc.description.abstractThin films of colloidal quantum dots (QDs) are promising solar photovoltaic (PV) absorbers in spite of their disordered nature. Disordered PV materials face a power conversion efficiency limit lower than the ideal Shockley-Queisser bound because of increased radiative recombination through band-tail states. However, investigations of band tailing in QD solar cells have been largely restricted to indirect measurements, leaving their ultimate efficiency in question. Here we use photothermal deflection spectroscopy (PDS) to robustly characterize the absorption edge of lead sulfide (PbS) QD films for different bandgaps, ligands, and processing conditions used in leading devices. We also present a comprehensive overview of band tailing in many commercial and emerging PV technologies - including c-Si, GaAs, a-Si:H, CdTe, CIGS, and perovskites - then calculate detailed-balance efficiency limits incorporating Urbach band tailing for each technology. Our PDS measurements on PbS QDs show sharp exponential band tails, with Urbach energies of 22 ± 1 meV for iodide-treated films and 24 ± 1 meV for ethanedithiol-treated films, comparable to those of polycrystalline CdTe and CIGS films. From these results, we calculate a maximum efficiency of 31%, close to the ideal limit without band tailing. This finding suggests that disorder does not constrain the long-term potential of QD solar cells.en_US
dc.publisherAmerican Chemical Society (ACS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/acsenergylett.7b00923en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceACSen_US
dc.titleRadiative Efficiency Limit with Band Tailing Exceeds 30% for Quantum Dot Solar Cellsen_US
dc.typeArticleen_US
dc.identifier.citationJean, Joel et al. “Radiative Efficiency Limit with Band Tailing Exceeds 30% for Quantum Dot Solar Cells.” ACS Energy Letters 2, 11 (October 2017): 2616–2624 © 2017 American Chemical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorJean, Joel
dc.contributor.mitauthorMahony, Thomas Stephen
dc.contributor.mitauthorBozyigit, Jonas Denis
dc.contributor.mitauthorSponseller, Melany Christine
dc.contributor.mitauthorBawendi, Moungi G
dc.contributor.mitauthorBulovic, Vladimir
dc.relation.journalACS Energy Lettersen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-01-05T18:44:33Z
dspace.orderedauthorsJean, Joel; Mahony, Thomas S.; Bozyigit, Deniz; Sponseller, Melany; Holovský, Jakub; Bawendi, Moungi G.; Bulović, Vladimiren_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7758-1742
dc.identifier.orcidhttps://orcid.org/0000-0001-5762-6379
dc.identifier.orcidhttps://orcid.org/0000-0002-3798-7561
dc.identifier.orcidhttps://orcid.org/0000-0002-4396-8818
dc.identifier.orcidhttps://orcid.org/0000-0003-2220-4365
dc.identifier.orcidhttps://orcid.org/0000-0002-0960-2580
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record