Show simple item record

dc.contributor.authorKarelina, Maria
dc.contributor.authorKulik, Heather Janine
dc.date.accessioned2018-01-08T19:12:25Z
dc.date.available2018-01-08T19:12:25Z
dc.date.issued2017-01
dc.date.submitted2016-10
dc.identifier.issn1549-9618
dc.identifier.issn1549-9626
dc.identifier.urihttp://hdl.handle.net/1721.1/113023
dc.description.abstractHybrid quantum mechanical-molecular mechanical (QM/MM) simulations are widely used in enzyme simulation. Over ten convergence studies of QM/MM methods have revealed over the past several years that key energetic and structural properties approach asymptotic limits with only very large (ca. 500–1000 atom) QM regions. This slow convergence has been observed to be due in part to significant charge transfer between the core active site and the surrounding protein environment, which cannot be addressed by improvement of MM force fields or the embedding method employed within QM/MM. Given this slow convergence, it becomes essential to identify strategies for the most atom-economical determination of optimal QM regions and to gain insight into the crucial interactions captured only in large QM regions. Here, we extend and develop two methods for quantitative determination of QM regions. First, in the charge shift analysis (CSA) method, we probe the reorganization of electron density when core active site residues are removed completely, as determined by large-QM region QM/MM calculations. Second, we introduce the highly parallelizable Fukui shift analysis (FSA), which identifies how core/substrate frontier states are altered by the presence of an additional QM residue in smaller initial QM regions. We demonstrate that the FSA and CSA approaches are complementary and consistent on three test case enzymes: catechol O-methyltransferase, cytochrome P450cam, and hen eggwhite lysozyme. We also introduce validation strategies and test the sensitivities of the two methods to geometric structure, basis set size, and electronic structure methodology. Both methods represent promising approaches for the systematic, unbiased determination of quantum mechanical effects in enzymes and large systems that necessitate multiscale modeling.en_US
dc.language.isoen_US
dc.publisherAmerican Chemical Society (ACS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/acs.jctc.6b01049en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceProf. Kuliken_US
dc.titleSystematic Quantum Mechanical Region Determination in QM/MM Simulationen_US
dc.typeArticleen_US
dc.identifier.citationKarelina, Maria, and Kulik, Heather J. “Systematic Quantum Mechanical Region Determination in QM/MM Simulation.” Journal of Chemical Theory and Computation 13, 2 (January 2017): 563–576 © 2017 American Chemical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.approverKulik, Heather Jen_US
dc.contributor.mitauthorKarelina, Maria
dc.contributor.mitauthorKulik, Heather Janine
dc.relation.journalJournal of Chemical Theory and Computationen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsKarelina, Maria; Kulik, Heather J.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-9342-0191
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record