MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A block-tridiagonal solver with two-level parallelization for finite element-spectral codes

Author(s)
Lee, Jungpyo; Wright, John C
Thumbnail
DownloadA block-tridiagonal.pdf (6.609Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Two-level parallelization is introduced to solve a massive block-tridiagonal matrix system. One-level is used for distributing blocks whose size is as large as the number of block rows due to the spectral basis, and the other level is used for parallelizing in the block row dimension. The purpose of the added parallelization dimension is to retard the saturation of the scaling due to communication overhead and inefficiencies in the single-level parallelization only distributing blocks. As a technique for parallelizing the tridiagonal matrix, the combined method of "Partitioned Thomas method" and "Cyclic Odd-Even Reduction" is implemented in an MPI-Fortran90 based finite element-spectral code (TORIC) that calculates the propagation of electromagnetic waves in a tokamak. The two-level parallel solver using thousands of processors shows more than 5 times improved computation speed with the optimized processor grid compared to the single-level parallel solver under the same conditions. Three-dimensional RF field reconstructions in a tokamak are shown as examples of the physics simulations that have been enabled by this algorithmic advance.
Date issued
2014-06
URI
http://hdl.handle.net/1721.1/113076
Department
Massachusetts Institute of Technology. Plasma Science and Fusion Center
Journal
Computer Physics Communications
Publisher
Elsevier
Citation
Lee, Jungpyo and Wright, John C. “A Block-Tridiagonal Solver with Two-Level Parallelization for Finite Element-Spectral Codes.” Computer Physics Communications 185, 10 (October 2014): 2598–2608 © 2014 Elsevier B.V.
Version: Author's final manuscript
ISSN
0010-4655

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.